Image inpainting consists of filling holes or missing parts of an image. Inpainting face images with symmetric characteristics is more challenging than inpainting a natural scene. None of the powerful existing models ...
详细信息
This work focuses on the problem of distributed optimization in multi-agent cyberphysical systems, where a legitimate agent's iterates are influenced both by the values it receives from potentially malicious neigh...
详细信息
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing ***,the limited energy resources of Sensor Nodes(SNs)a...
详细信息
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing ***,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable *** data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network *** mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring *** unique determination of this study is the shortest path to reach *** the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static *** this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the *** methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide *** addition,a method of using MS scheduling for efficient data collection is *** simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators.
Beamforming is now a basic technique in wireless communication to improve signal quality and reduce interference. This study investigates the use of deep learning-enhanced beamforming to improve the quality of transmi...
详细信息
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)ar...
详细信息
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)areas or high reward(quality)*** existing methods perform exploration by only utilizing the novelty of *** novelty and quality in the neighboring area of the current state have not been well utilized to simultaneously guide the agent’s *** address this problem,this paper proposes a novel RL framework,called clustered reinforcement learning(CRL),for efficient exploration in *** adopts clustering to divide the collected states into several clusters,based on which a bonus reward reflecting both novelty and quality in the neighboring area(cluster)of the current state is given to the *** leverages these bonus rewards to guide the agent to perform efficient ***,CRL can be combined with existing exploration strategies to improve their performance,as the bonus rewards employed by these existing exploration strategies solely capture the novelty of *** on four continuous control tasks and six hard-exploration Atari-2600 games show that our method can outperform other state-of-the-art methods to achieve the best performance.
We demonstrate a toroidal classification for quantum spin systems, revealing an intrinsic geometric duality within this structure. Through our classification and duality, we reveal that various bipartite quantum featu...
详细信息
We demonstrate a toroidal classification for quantum spin systems, revealing an intrinsic geometric duality within this structure. Through our classification and duality, we reveal that various bipartite quantum features in magnon systems can manifest equivalently in both bipartite ferromagnetic and antiferromagnetic materials, based upon the availability of relevant Hamiltonian parameters. Additionally, the results highlight the antiferromagnetic regime as an ultrafast dual counterpart to the ferromagnetic regime, both exhibiting identical capabilities for quantum spintronics and technological applications. Concrete illustrations are provided, demonstrating how splitting and squeezing types of two-mode magnon quantum correlations can be realized across ferro- and antiferromagnetic regimes.
Semantic segmentation is an important sub-task for many ***,pixel-level ground-truth labeling is costly,and there is a tendency to overfit to training data,thereby limiting the generalization *** domain adaptation can...
详细信息
Semantic segmentation is an important sub-task for many ***,pixel-level ground-truth labeling is costly,and there is a tendency to overfit to training data,thereby limiting the generalization *** domain adaptation can potentially address these problems by allowing systems trained on labelled datasets from the source domain(including less expensive synthetic domain)to be adapted to a novel target *** conventional approach involves automatic extraction and alignment of the representations of source and target domains *** limitation of this approach is that it tends to neglect the differences between classes:representations of certain classes can be more easily extracted and aligned between the source and target domains than others,limiting the adaptation over all ***,we address:this problem by introducing a Class-Conditional Domain Adaptation(CCDA)*** incorporates a class-conditional multi-scale discriminator and class-conditional losses for both segmentation and ***,they measure the segmentation,shift the domain in a classconditional manner,and equalize the loss over *** results demonstrate that the performance of our CCDA method matches,and in some cases,surpasses that of state-of-the-art methods.
The rapidly advancing Convolutional Neural Networks(CNNs)have brought about a paradigm shift in various computer vision tasks,while also garnering increasing interest and application in sensor-based Human Activity Rec...
详细信息
The rapidly advancing Convolutional Neural Networks(CNNs)have brought about a paradigm shift in various computer vision tasks,while also garnering increasing interest and application in sensor-based Human Activity Recognition(HAR)***,the significant computational demands and memory requirements hinder the practical deployment of deep networks in resource-constrained *** paper introduces a novel network pruning method based on the energy spectral density of data in the frequency domain,which reduces the model’s depth and accelerates activity *** traditional pruning methods that focus on the spatial domain and the importance of filters,this method converts sensor data,such as HAR data,to the frequency domain for *** emphasizes the low-frequency components by calculating their energy spectral density ***,filters that meet the predefined thresholds are retained,and redundant filters are removed,leading to a significant reduction in model size without compromising performance or incurring additional computational ***,the proposed algorithm’s effectiveness is empirically validated on a standard five-layer CNNs backbone *** computational feasibility and data sensitivity of the proposed scheme are thoroughly ***,the classification accuracy on three benchmark HAR datasets UCI-HAR,WISDM,and PAMAP2 reaches 96.20%,98.40%,and 92.38%,***,our strategy achieves a reduction in Floating Point Operations(FLOPs)by 90.73%,93.70%,and 90.74%,respectively,along with a corresponding decrease in memory consumption by 90.53%,93.43%,and 90.05%.
This paper proposes a distributed algorithm to drive all agents in a heterogeneous multi-agent system (MAS) to the geometric mean of their initial conditions. It is defined as the GM-consensus problem. The proposed GM...
详细信息
暂无评论