Light clients implement a simple solution for Bitcoin’s scalability problem, as they do not store the entire blockchain but only the state of particular addresses of interest. To be able to keep track of the updated ...
详细信息
False Data Injection Attacks (FDIA) pose a significant threat to the stability of smart grids. Traditional Bad Data Detection (BDD) algorithms, deployed to remove low-quality data, can easily be bypassed by these atta...
详细信息
False Data Injection Attacks (FDIA) pose a significant threat to the stability of smart grids. Traditional Bad Data Detection (BDD) algorithms, deployed to remove low-quality data, can easily be bypassed by these attacks which require minimal knowledge about the parameters of the power bus systems. This makes it essential to develop defence approaches that are generic and scalable to all types of power systems. Deep learning algorithms provide state-of-the-art detection for FDIA while requiring no knowledge about system parameters. However, there are very few works in the literature that evaluate these models for FDIA detection at the level of an individual node in the power system. In this paper, we compare several recent deep learning-based model that proven their high performance and accuracy in detecting the exact location of the attack node, which are convolutional neural networks (CNN), Long Short-Term Memory (LSTM), attention-based bidirectional LSTM, and hybrid models. We, then, compare their performance with baseline multi-layer perceptron (MLP)., All the models are evaluated on IEEE-14 and IEEE-118 bus systems in terms of row accuracy (RACC), computational time, and memory space required for training the deep learning model. Each model was further investigated through a manual grid search to determine the optimal architecture of the deep learning model, including the number of layers and neurons in each layer. Based on the results, CNN model exhibited consistently high performance in very short training time. LSTM achieved the second highest accuracy;however, it had required an averagely higher training time. The attention-based LSTM model achieved a high accuracy of 94.53 during hyperparameter tuning, while the CNN model achieved a moderately lower accuracy with only one-fourth of the training time. Finally, the performance of each model was quantified on different variants of the dataset—which varied in their l2-norm. Based on the results, LSTM, CNN obta
This paper presents a high-security medical image encryption method that leverages a novel and robust sine-cosine *** map demonstrates remarkable chaotic dynamics over a wide range of *** employ nonlinear analytical t...
详细信息
This paper presents a high-security medical image encryption method that leverages a novel and robust sine-cosine *** map demonstrates remarkable chaotic dynamics over a wide range of *** employ nonlinear analytical tools to thoroughly investigate the dynamics of the chaotic map,which allows us to select optimal parameter configurations for the encryption *** findings indicate that the proposed sine-cosine map is capable of generating a rich variety of chaotic attractors,an essential characteristic for effective *** encryption technique is based on bit-plane decomposition,wherein a plain image is divided into distinct bit *** planes are organized into two matrices:one containing the most significant bit planes and the other housing the least significant *** subsequent phases of chaotic confusion and diffusion utilize these matrices to enhance *** auxiliary matrix is then generated,comprising the combined bit planes that yield the final encrypted *** results demonstrate that our proposed technique achieves a commendable level of security for safeguarding sensitive patient information in medical *** a result,image quality is evaluated using the Structural Similarity Index(SSIM),yielding values close to zero for encrypted images and approaching one for decrypted ***,the entropy values of the encrypted images are near 8,with a Number of Pixel Change Rate(NPCR)and Unified Average Change Intensity(UACI)exceeding 99.50%and 33%,***,quantitative assessments of occlusion attacks,along with comparisons to leading algorithms,validate the integrity and efficacy of our medical image encryption approach.
Conventional fuzzy systems(type-1 and type 2)are universal *** goal of this paper is to design and implement a new chaotic fuzzy system(NCFS)based on the Lee oscil-lator for function approximation and chaotic *** inco...
详细信息
Conventional fuzzy systems(type-1 and type 2)are universal *** goal of this paper is to design and implement a new chaotic fuzzy system(NCFS)based on the Lee oscil-lator for function approximation and chaotic *** incorporates fuzzy reasoning of the fuzzy systems,self-adaptation of the neural networks,and chaotic signal generation in a unique *** features enable the structure to handle uncertainties by generating new information or by chaotic search among prior *** fusion of chaotic structure into the neurons of the membership layer of a conventional fuzzy system makes the NCFS more capable of confronting nonlinear *** on the GFA and Stone-Weierstrass theorems,we show that the proposed model has the function approximation *** NCFS perfor-mance is investigated by applying it to the problem of chaotic *** results are demonstrated to ilustrate the concept of function approximation.
Water quality prediction methods forecast the short-or long-term trends of its changes, providing proactive advice for preventing and controlling water pollution. Existing water quality prediction methods typically fa...
详细信息
Graph alignment refers to the task of finding the vertex correspondence between two correlated graphs of n vertices. Extensive study has been done on polynomial time algorithms for the graph alignment problem under th...
详细信息
The evolutionary algorithms with shuffling concept divide a population into several groups and then each group try to evolve its members in an independent evolutionary process. In an attempt to increase and diversify ...
详细信息
Given a directed graph G = (V, E) with n vertices, m edges and a designated source vertex s ∈ V, we consider the question of finding a sparse subgraph H of G that preserves the flow from s up to a given threshold λ ...
详细信息
Detection and segmentation of defocus blur is a challenging task in digital imaging applications as the blurry images comprise of blur and sharp regions that wrap significant information and require effective methods ...
详细信息
Detection and segmentation of defocus blur is a challenging task in digital imaging applications as the blurry images comprise of blur and sharp regions that wrap significant information and require effective methods for information *** defocus blur detection and segmentation methods have several limitations i.e.,discriminating sharp smooth and blurred smooth regions,low recognition rate in noisy images,and high computational cost without having any prior knowledge of images i.e.,blur degree and camera ***,there exists a dire need to develop an effective method for defocus blur detection,and segmentation robust to the above-mentioned *** paper presents a novel features descriptor local directional mean patterns(LDMP)for defocus blur detection and employ KNN matting over the detected LDMP-Trimap for the robust segmentation of sharp and blur *** argue/hypothesize that most of the image fields located in blurry regions have significantly less specific local patterns than those in the sharp regions,therefore,proposed LDMP features descriptor should reliably detect the defocus blurred *** fusion of LDMP features with KNN matting provides superior performance in terms of obtaining high-quality segmented regions in the ***,the proposed LDMP features descriptor is robust to noise and successfully detects defocus blur in high-dense noisy *** results on Shi and Zhao datasets demonstrate the effectiveness of the proposed method in terms of defocus blur *** and comparative analysis signify that our method achieves superior segmentation performance and low computational cost of 15 seconds.
Abstract The development of physically crosslinked hydrogels with excellent mechanical and sensing properties is of importance for expanding the practical applications of intelligent soft hydrogel ***,after copolymeri...
详细信息
Abstract The development of physically crosslinked hydrogels with excellent mechanical and sensing properties is of importance for expanding the practical applications of intelligent soft hydrogel ***,after copolymerization of hydroxyl-containing amino acid derivative N-acryloyl serine(ASer)with acrylamide(AM),we introduce Zr4+through an immersion strategy to construct metal ion-toughened non-covalent crosslinked hydrogels(with tensile strength of up to 5.73 MPa).It is found that the synergistic coordination of hydroxyl and carboxyl groups with Zr^(4+)substantially increases the crosslinking density of the hydrogels,thereby imparting markedly superior mechanical properties compared to hydroxyl-free Zr^(4+)-crosslinked hydrogels,such as N-acryloyl alanine(AAla)copolymerized with AM hydrogels(with tensile strength of 2.98 MPa)Through the adjustment of the composition of the copolymer and the density of coordination bonds,the mechanical properties of the hydrogels can be modulated over a wide ***,due to the introduction of metal ions and the dynamic nature of coordination bonds,the hydrogels also exhibit excellent sensing performance and good self-recovery properties,paving the way for the development of flexible electronic substrates with outstanding comprehensive performances.
暂无评论