A silicon solar cell with a power conversion efficiency (PCE)of 4% was born in Bell Lab in 1954, seven decades ago. Today,silicon solar cells have reached an efficiency above 25%and achieved pervasive commercial succe...
A silicon solar cell with a power conversion efficiency (PCE)of 4% was born in Bell Lab in 1954, seven decades ago. Today,silicon solar cells have reached an efficiency above 25%and achieved pervasive commercial success [1]. In spite of the steady improvement in efficiency, the interest and enthusiasm in search for new materials and innovative device architectures for newgeneration solar cells have never diminished or subsided;
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memris...
详细信息
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memristors have been developed to emulate synaptic plasticity,replicating the key functionality of neurons—integrating diverse presynaptic inputs to fire electrical impulses—has remained *** this study,we developed reconfigurable metal-oxide-semiconductor capacitors(MOSCaps)based on hafnium diselenide(HfSe2).The proposed devices exhibit(1)optoelectronic synaptic features and perform separate stimulus-associated learning,indicating considerable adaptive neuron emulation,(2)dual light-enabled charge-trapping and memcapacitive behavior within the same MOSCap device,whose threshold voltage and capacitance vary based on the light intensity across the visible spectrum,(3)memcapacitor volatility tuning based on the biasing conditions,enabling the transition from volatile light sensing to non-volatile optical data *** reconfigurability and multifunctionality of MOSCap were used to integrate the device into a leaky integrate-and-fire neuron model within a spiking neural network to dynamically adjust firing patterns based on light stimuli and detect exoplanets through variations in light intensity.
Wide field of view and light weight optics are critical for advanced eyewear,with applications in augmented/virtual reality and night *** refractive lenses are often stacked to correct aberrations at a wide field of v...
详细信息
Wide field of view and light weight optics are critical for advanced eyewear,with applications in augmented/virtual reality and night *** refractive lenses are often stacked to correct aberrations at a wide field of view,leading to limited performance and increased size and *** particular,simultaneously achieving a wide field of view and large aperture for light collection is desirable but challenging to realize in a compact ***,we demonstrate a wide field of view(greater than 60°)meta-optic doublet eyepiece with an entrance aperture of 2.1 *** the design wavelength of 633 nm,the meta-optic doublet achieves comparable performance to a refractive lens-based eyepiece *** meta-doublet eyepiece illustrates the potential for meta-optics to play an important role in the development of high-quality monochrome near-eye displays and night vision systems.
Integration of phase-change materials(PCMs)created a unique opportunity to implement reconfigurable photonics devices that their performance can be tuned depending on the target *** PCMs such as Ge-Sb-Te(GST)and Ge-Sb...
详细信息
Integration of phase-change materials(PCMs)created a unique opportunity to implement reconfigurable photonics devices that their performance can be tuned depending on the target *** PCMs such as Ge-Sb-Te(GST)and Ge-Sb-Se-Te(GSST)rely on melt-quench and high temperature annealing processes to change the organization of the molecules in the materials’*** a reorganization leads to different optical,electrical,and thermal properties which can be exploited to implement photonic memory cells that are able to store the data at different resistance or optical transmission *** the great promise of conventional PCMs for realizing reconfigurable photonic memories,their slow and extremely power-hungry thermal mechanisms make scaling the systems based on such devices *** addition,such materials do not offer a stable multi-level response over a long period of *** address these shortcomings,the research carried out in this study shows the proof of concept to implement next-generation photonic memory cells based on two-dimensional(2D)birefringence PCMs such as SnSe,which offer anisotropic optical properties that can be switched *** demonstrate that by leveraging the ultrafast and low-power crystallographic direction change of the material,the optical polarization state of the input optical signal can be *** enables the implementation of next-generation high-speed polarization-encodable photonic memory cells for future photonic computing *** to the conventional PCMs,the proposed SnSe-based photonic memory cells offer an ultrafast switching and low-loss optical response relying on ferroelectric property of SnSe to encode the data on the polarization state of the input optical *** a polarization encoding scheme also reduces memory read-out errors and alleviates the scalability limitations due to the optical insertion loss often seen in optical transmission encoding.
Given the severity of waste pollution as a major environmental concern, intelligent and sustainable waste management is becoming increasingly crucial in both developed and developing countries. The material compositio...
详细信息
A bimorph lithium niobate (LN) transducer has been proposed as a microphone. Surface electrodes sense the lateral in-plane electric field in thin LN films resulting from out of plane deformation due to acoustic pressu...
详细信息
We study variable-length feedback (VLF) codes with noiseless feedback for discrete memoryless channels. We present a novel non-asymptotic bound, which analyzes the average error probability and average decoding time o...
详细信息
This article reports the first groups of low-loss acoustic solidly mounted resonators (SMRs) and acoustic delay lines (ADLs) at 14–20 GHz. Bulk acoustic waves (BAWs) are confined in thin-film scandium aluminum nitrid...
详细信息
In this study, we prepared various aluminum-doped zinc oxide (AZO) surface structures via chemical bath deposition for use in biomedical sensors. Indium tin oxide (ITO) conductive films were deposited on glass substra...
详细信息
W-type barium-nickel ferrite(BaNi_(2)Fe_(16)O_(27))is a highly promising material for electromagnetic wave(EMW)absorption be-cause of its magnetic loss capability for EMW,low cost,large-scale production potential,high...
详细信息
W-type barium-nickel ferrite(BaNi_(2)Fe_(16)O_(27))is a highly promising material for electromagnetic wave(EMW)absorption be-cause of its magnetic loss capability for EMW,low cost,large-scale production potential,high-temperature resistance,and excellent chemical ***,the poor dielectric loss of magnetic ferrites hampers their utilization,hindering enhancement in their EMW-absorption *** efficient strategies that improve the EMW-absorption performance of ferrite is highly desired but re-mains ***,an efficient strategy substituting Ba^(2+)with rare earth La^(3+)in W-type ferrite was proposed for the preparation of novel La-substituted ferrites(Ba_(1-x)LaxNi_(2)Fe_(15.4)O_(27)).The influences of La^(3+)substitution on ferrites’EMW-absorption performance and the dissipative mechanism toward EMW were systematically explored and ***^(3+)efficiently induced lattice defects,enhanced defect-induced polarization,and slightly reduced the ferrites’bandgap,enhancing the dielectric properties of the ***^(3+)also enhanced the ferromagnetic resonance loss and strengthened magnetic *** effects considerably improved the EMW-absorption perform-ance of Ba_(1-x)LaxNi_(2)Fe_(15.4)O_(27)compared with pure W-type *** x=0.2,the best EMW-absorption performance was achieved with a minimum reflection loss of-55.6 dB and effective absorption bandwidth(EAB)of 3.44 GHz.
暂无评论