This paper presents a novel method for accurately estimating the cumulative capacity credit(CCC)of renewable energy(RE)*** data from the main interconnected system(MIS)of Oman for 2028,where a substantial increase in ...
详细信息
This paper presents a novel method for accurately estimating the cumulative capacity credit(CCC)of renewable energy(RE)*** data from the main interconnected system(MIS)of Oman for 2028,where a substantial increase in RE generation is anticipated,the method is introduced alongside the traditional effective load carrying capability(ELCC)*** ensure its robustness,we compare CCC results with ELCC calculations using two distinct standards of reliability criteria:loss of load hours(LOLH)at 24 hour/year and 2.4 hour/*** method consistently gives accurate results,emphasizing its exceptional accuracy,efficiency,and simplicity.A notable feature of the method is its independence from loss of load probability(LOLP)calculations and the iterative procedures associated with analytic-based reliability ***,it relies solely on readily available data such as annual hourly load profiles and hourly generation data from integrated RE *** innovation is of particular significance to prospective independent power producers(IPPs)in the RE sector,offering them a valuable tool for estimating capacity credits without the need for sensitive generating unit forced outage rate data,often restricted by privacy concerns.
The subsynchronous oscillations(SSOs)related to renewable generation seriously affect the stability and safety of the power *** realize the dynamic monitoring of SSOs by utilizing the high computational efficiency and...
详细信息
The subsynchronous oscillations(SSOs)related to renewable generation seriously affect the stability and safety of the power *** realize the dynamic monitoring of SSOs by utilizing the high computational efficiency and noise-resilient features of the matrix pencil method(MPM),this paper propos es an improved MPM-based parameter identification with syn *** MPM is enhanced by the angular frequency fitting equations based on the characteristic polynomial coeffi cients of the matrix pencil to ensure the accuracy of the identi fied parameters,since the existing eigenvalue solution of the MPM ignores the angular frequency conjugation constraints of the two fundamental modes and two oscillation ***,the identification and recovery of bad data are proposed by uti lizing the difference in temporal continuity of the synchropha sors before and after noise *** proposed parameter identification is verified with synthetic,simulated,and actual measured phase measurement unit(PMU)*** with the existing MPM,the improved MPM achieves better accuracy for parameter identification of each component in SSOs,better real-time performance,and significantly reduces the effect of bad data.
In this paper, we consider the problem of finding a meta-learning online control algorithm that can learn across the tasks when faced with a sequence of N (similar) control tasks. Each task involves controlling a line...
详细信息
In optical applications where avalanche photodiodes (APDs) provide the benefit of high sensitivity, Sb-based materials systems such as AlInAsSb and AlGaAsSb have shown extremely low excess noise factors. The Monte Car...
详细信息
Machine learning-based detection of false data injection attacks (FDIAs) in smart grids relies on labeled measurement data for training and testing. The majority of existing detectors are developed assuming that the a...
详细信息
Machine learning-based detection of false data injection attacks (FDIAs) in smart grids relies on labeled measurement data for training and testing. The majority of existing detectors are developed assuming that the adopted datasets for training have correct labeling information. However, such an assumption is not always valid as training data might include measurement samples that are incorrectly labeled as benign, namely, adversarial data poisoning samples, which have not been detected before. Neglecting such an aspect makes detectors susceptible to data poisoning. Our investigations revealed that detection rates (DRs) of existing detectors significantly deteriorate by up to 9-29% when subject to data poisoning in generalized and topology-specific settings. Thus, we propose a generalized graph neural network-based anomaly detector that is robust against FDIAs and data poisoning. It requires only benign datasets for training and employs an autoencoder with Chebyshev graph convolutional recurrent layers with attention mechanism to capture the spatial and temporal correlations within measurement data. The proposed convolutional recurrent graph autoencoder model is trained and tested on various topologies (from 14, 39, and 118-bus systems). Due to such factors, it yields stable generalized detection performance that is degraded by only 1.6-3.7% in DR against high levels of data poisoning and unseen FDIAs in unobserved topologies. Impact Statement-Artificial Intelligence (AI) systems are used in smart grids to detect cyberattacks. They can automatically detect malicious actions carried out bymalicious entities that falsifymeasurement data within power grids. Themajority of such systems are data-driven and rely on labeled data for model training and testing. However, datasets are not always correctly labeled since malicious entities might be carrying out cyberattacks without being detected, which leads to training on mislabeled datasets. Such actions might degrade the d
Bidirectional electric vehicle (EV) charging enables stored energy to reduce peak loads for buildings (V2B) and the grid (V2G). However, building owners investing in V2B infrastructure while generating revenue from V2...
详细信息
Wireless power transfer (WPT) within the human body can enable long-lasting medical devices but poses notable challenges, including absorption by biological tissues and weak coupling between the transmitter (Tx) and r...
详细信息
The capability of a system to fulfill its mission promptly in the presence of attacks,failures,or accidents is one of the qualitative definitions of *** this paper,we propose a model for survivability quantification,w...
详细信息
The capability of a system to fulfill its mission promptly in the presence of attacks,failures,or accidents is one of the qualitative definitions of *** this paper,we propose a model for survivability quantification,which is acceptable for networks carrying complex traffic *** network traffic is considered as general multi-rate,heterogeneous traffic,where the individual bandwidth demands may aggregate in complex,nonlinear *** probability is the chosen measure for survivability *** study an arbitrary topology and some other known topologies for the *** and dependent failure scenarios as well as deterministic and random traffic models are ***,we provide survivability evaluation results for different network *** results show that by using about 50%of the link capacity in networks with a relatively high number of links,the blocking probability remains near zero in the case of a limited number of failures.
Optoelectronic devices are advantageous in in-memory light sensing for visual information processing,recognition,and storage in an energy-efficient ***,in-memory light sensors have been proposed to improve the energy,...
详细信息
Optoelectronic devices are advantageous in in-memory light sensing for visual information processing,recognition,and storage in an energy-efficient ***,in-memory light sensors have been proposed to improve the energy,area,and time efficiencies of neuromorphic computing *** study is primarily focused on the development of a single sensing-storage-processing node based on a two-terminal solution-processable MoS2 metal-oxide-semiconductor(MOS)charge-trapping memory structure—the basic structure for charge-coupled devices(CCD)—and showing its suitability for in-memory light sensing and artificial visual *** memory window of the device increased from 2.8 V to more than 6V when the device was irradiated with optical lights of different wavelengths during the program ***,the charge retention capability of the device at a high temperature(100 ℃)was enhanced from 36 to 64%when exposed to a light wavelength of 400 *** larger shift in the threshold voltage with an increasing operating voltage confirmed that more charges were trapped at the Al_(2)O_(3)/MoS_(2) interface and in the MoS_(2) layer.A small convolutional neural network was proposed to measure the optical sensing and electricalprogramming abilities of the *** array simulation received optical images transmitted using a blue light wavelength and performed inference computation to process and recognize the images with 91%*** study is a significant step toward the development of optoelectronic MOS memory devices for neuromorphic visual perception,adaptive parallel processing networks for in-memory light sensing,and smart CCD cameras with artificial visual perception capabilities.
暂无评论