The strong impact of the strain-induced Dzyaloshinskii-Moriya interaction (SIDMI) on the magnetization dynamics of skyrmions in nanomagnetic structures is demonstrated. The effects of SIDMI are characterized by skyrmi...
详细信息
The strong impact of the strain-induced Dzyaloshinskii-Moriya interaction (SIDMI) on the magnetization dynamics of skyrmions in nanomagnetic structures is demonstrated. The effects of SIDMI are characterized by skyrmion equations (SEs) of motion and magnetoelastic (ME) equations. The study is performed on a model system of MgO/CoFe/Pt stacked on a piezoelectric substrate. The results demonstrate a major nonlinear amplification in both the first- and higher-harmonic magnitudes of the skyrmion breathing mode due to SIDMI. Remarkably, this enhancement can trigger a skyrmion collapse, enabling its deletion with ultraweak strain-induced excitations. The SIDMI effect is shown to be much more significant than the conventional ME effect. These findings open different avenues for the efficient manipulation of nanomagnetic structures through strain.
This study introduces a novel diagnostic method for schizophrenia using causal discovery and node embedding techniques on resting-state fMRI data. Data from 148 subjects (27 schizophrenia patients, 121 healthy control...
详细信息
The pace of development in the world of 5G communication systems has proven to be much more demanding than previous generations, with 5G-Advanced seemingly around the corner [1]. Extensive research is already underway...
The pace of development in the world of 5G communication systems has proven to be much more demanding than previous generations, with 5G-Advanced seemingly around the corner [1]. Extensive research is already underway to structure the next generation of wireless systems(i.e. 6G), which may potentially enable an unprecedented level of human–machine interaction [2].
This study aims to increase the number of access users by limiting the sample size to 30 users while ensuring that every Optical Network Unit (ONU) receives data from the Optical Line Terminal (OLT). The proposed solu...
详细信息
We present further progress, in the form of analytical results, on the Wigner entropy conjecture set forth by Van Herstraeten and Cerf [Phys. Rev. A 104, 042211 (2021)] and Hertz et al. [J. Phys. A: Math. Theor. 50, 3...
详细信息
We present further progress, in the form of analytical results, on the Wigner entropy conjecture set forth by Van Herstraeten and Cerf [Phys. Rev. A 104, 042211 (2021)] and Hertz et al. [J. Phys. A: Math. Theor. 50, 385301 (2017)]. Said conjecture asserts that the differential entropy defined for non-negative, yet physical, Wigner functions is minimized by pure Gaussian states while the minimum entropy is equal to 1+lnπ. We prove this conjecture for the qubits formed by Fock states |0〉 and |1〉 that correspond to non-negative Wigner functions. In particular, we derive an explicit form of the Wigner entropy for those states lying on the boundary of the set of Wigner non-negative qubits. We then consider general mixed states and derive a sufficient condition for the conjecture's validity. Lastly, we elaborate on the states which are in accordance with our condition.
Beam-displacement measurements are widely used in optical sensing and communications; however, their performance is affected by numerous intrinsic and extrinsic factors, including beam profile, propagation loss, and r...
详细信息
Beam-displacement measurements are widely used in optical sensing and communications; however, their performance is affected by numerous intrinsic and extrinsic factors, including beam profile, propagation loss, and receiver architecture. Here we present a framework for designing a classically optimal beam-displacement transceiver, using quantum estimation theory. We consider the canonical task of estimating the position of a diffraction-limited laser beam after passing through an apertured volume characterized by Fresnel-number product DF. As a rule of thumb, higher-order Gaussian modes provide more information about beam displacement, but are more sensitive to loss. Applying quantum Fisher information, we design mode combinations that optimally leverage this trade-off, and show that a greater than tenfold improvement in precision is possible, relative to the fundamental mode, for a practically relevant DF=100. We also show that this improvement is realizable with a variety of practical receiver architectures. Our findings extend previous works on lossless transceivers, may have immediate impact on applications, such as atomic force microscopy and near-field optical communication, and pave the way towards globally optimal transceivers using nonclassical laser fields.
Purpose: Heterogeneous mental disorders such as autism spectrum disorder (ASD) are difficult to diagnose, especially in children. The current psychiatric diagnosis process is based solely on the observation of behavio...
详细信息
Breast cancer is an occurrence of cancer that attacks breast tissue and is the most common cancer among women worldwide, affecting one in eight women. In this modern world, breast cancer image classification simplifie...
详细信息
暂无评论