作者:
Yi-Sheng HuangSheng-Luen ChungMu-Der JengDepartment of Aeronautical Engineering
Chung Cheng Institute of Technology National Defense University Tashi Taoyuan 335 Taiwan R.O.C. Department of Electrical Engineering
National Taiwan University of Science and Technology Taipei 106 Taiwan R.O.C. Department of Electrical Engineering
National Taiwan Ocean University Kellung 202 Taiwan R.O.C. MuDer Jeng received the Ph.D. degree in computer and systems engineering from Rensselaer Polytechnic Institute
Troy NY in 1992. Since August 1992 Dr. Jeng has been with National Taiwan Ocean University Keelung Taiwan where he is currently a full Professor at the Department of Electrical Engineering. His current research interests include Petri nets discrete event systems computer integrated manufacturing semiconductor factory automation embedded systems. Dr. Jeng is the author/co-author of over 120 book chapters journal papers and conference papers. Dr. Jeng received the Franklin V. Taylor Outstanding Paper Award from the IEEE Systems Man and Cybernetics Society in 1993. He was granted the Research Award by the National Science Council of Taiwan annually from 1994 to 2000. He is an Associate Editor for IEEE Transactions on Systems Man and Cybernetics-Part A IEEE Transactions on Robotics and Automation IEEE Transactions on Robotics and serves on the Editorial Board of International Journal of Computer Integrated Manufacturing. He has been a Guest Editor for eight leading journals. Dr. Jeng is the Chair of the Technical Committee on Discrete Event Systems of the IEEE SMC Society and the Founding Chair of the Technical Committee on Semiconductor Factory Automation of the IEEE Robotics and Automation Society. He served as the Exhibitions Chair of 2003 IEEE International Conference on Robotics and Automation and the Special Sessions Chair of 2004 IEEE International Conference on Networking Sensing and Control. He serves as a Program Co-Chair of 2005 IEEE International Conference on Networking Sensing and Control and the Organization Commit
Statechart has been utilized as a visual formalism for the modeling of complex and interactive systems for its illuminating features on describing properties of causality, concurrency, and synchronization. This paper ...
详细信息
Statechart has been utilized as a visual formalism for the modeling of complex and interactive systems for its illuminating features on describing properties of causality, concurrency, and synchronization. This paper presents the application of satechart to the modeling, design and implementation of an elevator system, whose system behavior involves aggregating complexity of state descriptions, and imposition of underlying control policy. Based on the operational flow of an elevator, we derive the associated statechart model by looking into the inherent hierarchical structure of the elevator. The advantage of the proposed approach is the clear presentation of system behavior in terms of conditions and events that cause the transitions in system dynamics. Implementation of the controlled elevator based on the modeled statechart is also presented.
暂无评论