The steady-state security region(SSR)offers ro-bust support for the security assessment and control of new power systems with high uncertainty and ***,accurately solving the steady-state security region boundary(SS-RB...
详细信息
The steady-state security region(SSR)offers ro-bust support for the security assessment and control of new power systems with high uncertainty and ***,accurately solving the steady-state security region boundary(SS-RB),which is high-dimensional,non-convex,and non-linear,presents a significant *** address this problem,this paper proposes a method for approximating the SSRB in power systems using the feature non-linear converter and improved oblique decision ***,to better characterize the SSRB,boundary samples are generated using the proposed sampling *** samples are distributed within a limited distance near the ***,to handle the high-dimensionality,non-convexity and non-linearity of the SSRB,boundary samples are converted from the original power injection space to a new fea-ture space using the designed feature non-linear ***-sequently,in this feature space,boundary samples are linearly separated using the proposed information gain rate based weighted oblique decision ***,the effectiveness and generality of the proposed sampling method are verified on the WECC 3-machine 9-bus system and IEEE 118-bus system.
Non-linear optics is a branch of optics that studies the intriguing and sometimes unexpected ways in which light and matter interact at high intensities, when the polarization density does not respond linearly to the ...
Non-linear optics is a branch of optics that studies the intriguing and sometimes unexpected ways in which light and matter interact at high intensities, when the polarization density does not respond linearly to the electric field of the light. The pursuit of the perfect non-linear optical material has been ongoing ever since the pioneering experiment on second harmonic generation carried out by Franken in 1961 [1]. Indeed,
Wide field of view and light weight optics are critical for advanced eyewear,with applications in augmented/virtual reality and night *** refractive lenses are often stacked to correct aberrations at a wide field of v...
详细信息
Wide field of view and light weight optics are critical for advanced eyewear,with applications in augmented/virtual reality and night *** refractive lenses are often stacked to correct aberrations at a wide field of view,leading to limited performance and increased size and *** particular,simultaneously achieving a wide field of view and large aperture for light collection is desirable but challenging to realize in a compact ***,we demonstrate a wide field of view(greater than 60°)meta-optic doublet eyepiece with an entrance aperture of 2.1 *** the design wavelength of 633 nm,the meta-optic doublet achieves comparable performance to a refractive lens-based eyepiece *** meta-doublet eyepiece illustrates the potential for meta-optics to play an important role in the development of high-quality monochrome near-eye displays and night vision systems.
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memris...
详细信息
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memristors have been developed to emulate synaptic plasticity,replicating the key functionality of neurons—integrating diverse presynaptic inputs to fire electrical impulses—has remained *** this study,we developed reconfigurable metal-oxide-semiconductor capacitors(MOSCaps)based on hafnium diselenide(HfSe2).The proposed devices exhibit(1)optoelectronic synaptic features and perform separate stimulus-associated learning,indicating considerable adaptive neuron emulation,(2)dual light-enabled charge-trapping and memcapacitive behavior within the same MOSCap device,whose threshold voltage and capacitance vary based on the light intensity across the visible spectrum,(3)memcapacitor volatility tuning based on the biasing conditions,enabling the transition from volatile light sensing to non-volatile optical data *** reconfigurability and multifunctionality of MOSCap were used to integrate the device into a leaky integrate-and-fire neuron model within a spiking neural network to dynamically adjust firing patterns based on light stimuli and detect exoplanets through variations in light intensity.
Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless *** this paper,a robust transmission scheme for ...
详细信息
Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless *** this paper,a robust transmission scheme for an AirCompbased FL system with imperfect channel state information(CSI)is *** model CSI uncertainty,an expectation-based error model is *** main objective is to maximize the number of selected devices that meet mean-squared error(MSE)requirements for model broadcast and model *** problem is formulated as a combinatorial optimization problem and is solved in two ***,the priority order of devices is determined by a sparsity-inducing ***,a feasibility detection scheme is used to select the maximum number of devices to guarantee that the MSE requirements are *** alternating optimization(AO)scheme is used to transform the resulting nonconvex problem into two convex *** results illustrate the effectiveness and robustness of the proposed scheme.
Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power *** power consumption at the receiver radio frequenc...
详细信息
Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power *** power consumption at the receiver radio frequency(RF)circuits can be significantly reduced by the application of analog-to-digital converter(ADC)of low *** this paper we investigate bandwidth efficiency(BE)of massive MIMO with perfect channel state information(CSI)by applying low resolution ADCs with Rician *** start our analysis by deriving the additive quantization noise model,which helps to understand the effects of ADC resolution on BE by keeping the power constraint at the receiver in *** also investigate deeply the effects of using higher bit rates and the number of BS antennas on bandwidth efficiency(BE)of the *** emphasize that good bandwidth efficiency can be achieved by even using low resolution ADC by using regularized zero-forcing(RZF)combining *** also provide a generic analysis of energy efficiency(EE)with different options of bits by calculating the energy efficiencies(EE)using the achievable *** emphasize that satisfactory BE can be achieved by even using low-resolution ADC/DAC in massive MIMO.
This study investigates a safe reinforcement learning algorithm for grid-forming(GFM)inverter based frequency *** guarantee the stability of the inverter-based resource(IBR)system under the learned control policy,a mo...
详细信息
This study investigates a safe reinforcement learning algorithm for grid-forming(GFM)inverter based frequency *** guarantee the stability of the inverter-based resource(IBR)system under the learned control policy,a modelbased reinforcement learning(MBRL)algorithm is combined with Lyapunov approach,which determines the safe region of states and *** obtain near optimal control policy,the control performance is safely improved by approximate dynamic programming(ADP)using data sampled from the region of attraction(ROA).Moreover,to enhance the control robustness against parameter uncertainty in the inverter,a Gaussian process(GP)model is adopted by the proposed algorithm to effectively learn system dynamics from *** simulations validate the effectiveness of the proposed algorithm.
We showcase the impact of almost-periodicity on the parametric amplification associated with the first-order momentum gap in photonic time-crystals with time-varying permittivity. Utilizing a vectorial coupled-wave th...
详细信息
We showcase the impact of almost-periodicity on the parametric amplification associated with the first-order momentum gap in photonic time-crystals with time-varying permittivity. Utilizing a vectorial coupled-wave theory approach, we rigorously analyze the scattering by a temporal slab of the considered medium. We pinpoint a critical regime wherein flaws in material tuning paradoxically enhance amplification due to the coupling of fewer, broader modes, resulting in a higher and broader pulselike amplification envelope. Additionally, we demonstrate that the intensity reflectances of time-reversed waves corresponding to secondary “Bragg” resonances achieve remarkably high levels of subharmonic parametric amplification, with the epsilon-near-zero regime serving as a preferred candidate for experimental implementation. Our counterintuitive findings highlight the potential of intentionally leveraging modulation desynchronization and impurities in the temporal unit cell of photonic time-crystals to enhance both the level and the bandwidth of amplification.
The subsynchronous oscillations(SSOs)related to renewable generation seriously affect the stability and safety of the power *** realize the dynamic monitoring of SSOs by utilizing the high computational efficiency and...
详细信息
The subsynchronous oscillations(SSOs)related to renewable generation seriously affect the stability and safety of the power *** realize the dynamic monitoring of SSOs by utilizing the high computational efficiency and noise-resilient features of the matrix pencil method(MPM),this paper propos es an improved MPM-based parameter identification with syn *** MPM is enhanced by the angular frequency fitting equations based on the characteristic polynomial coeffi cients of the matrix pencil to ensure the accuracy of the identi fied parameters,since the existing eigenvalue solution of the MPM ignores the angular frequency conjugation constraints of the two fundamental modes and two oscillation ***,the identification and recovery of bad data are proposed by uti lizing the difference in temporal continuity of the synchropha sors before and after noise *** proposed parameter identification is verified with synthetic,simulated,and actual measured phase measurement unit(PMU)*** with the existing MPM,the improved MPM achieves better accuracy for parameter identification of each component in SSOs,better real-time performance,and significantly reduces the effect of bad data.
Piezoelectric accelerometers excel in vibration *** the emerging trend of fully organic electronic microsystems,polymeric piezoelectric accelerometers can be used as vital front-end components to capture dynamic signa...
详细信息
Piezoelectric accelerometers excel in vibration *** the emerging trend of fully organic electronic microsystems,polymeric piezoelectric accelerometers can be used as vital front-end components to capture dynamic signals,such as vocal vibrations in wearable speaking assistants for those with speaking ***,high-performance polymeric piezoelectric accelerometers suitable for such applications are *** organic compounds such as PVDF have inferior properties to their inorganic counterparts such as ***,most existing polymeric piezoelectric accelerometers have very unbalanced performance *** often sacrifice resonance frequency and bandwidth for a flat-band sensitivity comparable to those of PZT-based accelerometers,leading to increased noise density and limited application *** this study,a new polymeric piezoelectric accelerometer design to overcome the material limitations of PVDF is *** new design aims to simultaneously achieve high sensitivity,broad bandwidth,and low *** samples were manufactured and characterized,demonstrating an average sensitivity of 29.45 pC/g within a±10 g input range,a 5%flat band of 160 Hz,and an in-band noise density of 1.4μg/√*** results surpass those of many PZT-based piezoelectric accelerometers,showing the feasibility of achieving comprehensively high performance in polymeric piezoelectric accelerometers to increase their potential in novel applications such as organic microsystems.
暂无评论