The work proposes a methodology for five different classes of ECG signals. The methodology utilises moving average filter and discrete wavelet transformation for the remove of baseline wandering and powerline interfer...
详细信息
This study investigates the effectiveness of haptic feedback in hand rehabilitation exercises, within both virtual reality (VR) and real-world settings, to enhance upper limb functionality in post-stroke recovery. We ...
详细信息
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high d...
详细信息
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high data *** consider randomly-deployed macro base stations throughout the network whereas mmWave Small Base Stations(SBSs)are deployed in the areas with high User Equipment(UE)*** user centric deployment of mmWave SBSs inevitably incurs correlation between UE and *** a realistic scenario where the UEs are distributed according to Poisson cluster process and directional beamforming with line-of-sight and non-line-of-sight transmissions is adopted for mmWave *** using tools from stochastic geometry,we develop an analytical framework to analyze various performance metrics in the downlink hybrid HCNets under biased received power *** UE clustering we considered Thomas cluster process and derive expressions for the association probability,coverage probability,area spectral efficiency,and energy *** also provide Monte Carlo simulation results to validate the accuracy of the derived ***,we analyze the impact of mmWave operating frequency,antenna gain,small cell biasing,and BSs density to get useful engineering insights into the performance of hybrid mmWave *** results show that network performance is significantly improved by deploying millimeter wave SBS instead of microwave BS in hot spots.
Light clients implement a simple solution for Bitcoin’s scalability problem, as they do not store the entire blockchain but only the state of particular addresses of interest. To be able to keep track of the updated ...
详细信息
Supply chain management and Hyperledger are two interconnected domains. They leverage blockchain technology to enhance efficiency, transparency, and security in supply chain operations. Together, they provide a decent...
详细信息
Classification and regression algorithms based on k-nearest neighbors (kNN) are often ranked among the top-10 Machine learning algorithms, due to their performance, flexibility, interpretability, non-parametric nature...
详细信息
Classification and regression algorithms based on k-nearest neighbors (kNN) are often ranked among the top-10 Machine learning algorithms, due to their performance, flexibility, interpretability, non-parametric nature, and computational efficiency. Nevertheless, in existing kNN algorithms, the kNN radius, which plays a major role in the quality of kNN estimates, is independent of any weights associated with the training samples in a kNN-neighborhood. This omission, besides limiting the performance and flexibility of kNN, causes difficulties in correcting for covariate shift (e.g., selection bias) in the training data, taking advantage of unlabeled data, domain adaptation and transfer learning. We propose a new weighted kNN algorithm that, given training samples, each associated with two weights, called consensus and relevance (which may depend on the query on hand as well), and a request for an estimate of the posterior at a query, works as follows. First, it determines the kNN neighborhood as the training samples within the kth relevance-weighted order statistic of the distances of the training samples from the query. Second, it uses the training samples in this neighborhood to produce the desired estimate of the posterior (output label or value) via consensus-weighted aggregation as in existing kNN rules. Furthermore, we show that kNN algorithms are affected by covariate shift, and that the commonly used sample reweighing technique does not correct covariate shift in existing kNN algorithms. We then show how to mitigate covariate shift in kNN decision rules by using instead our proposed consensus-relevance kNN algorithm with relevance weights determined by the amount of covariate shift (e.g., the ratio of sample probability densities before and after the shift). Finally, we provide experimental results, using 197 real datasets, demonstrating that the proposed approach is slightly better (in terms of F-1 score) on average than competing benchmark approaches for mit
Intelligent Space(IS)is widely regarded as a promising paradigm for improving quality of life through using service task *** the field matures,various state-of-the-art IS architectures have been *** of the IS architec...
详细信息
Intelligent Space(IS)is widely regarded as a promising paradigm for improving quality of life through using service task *** the field matures,various state-of-the-art IS architectures have been *** of the IS architectures designed for service robots face the problems of fixedfunction modules and low scalability when performing service *** this end,we propose a hybrid cloud service robot architecture based on a Service-Oriented Architecture(SOA).Specifically,we first use the distributed deployment of functional modules to solve the problem of high computing resource ***,the Socket communication interface layer is designed to improve the calling efficiency of the function ***,the private cloud service knowledge base and the dataset for the home environment are used to improve the robustness and success rate of the robot when performing ***,we design and deploy an interactive system based on Browser/Server(B/S)architecture,which aims to display the status of the robot in real-time as well as to expand and call the robot *** system is integrated into the private cloud framework,which provides a feasible solution for improving the quality of ***,it also fully reveals how to actively discover and provide the robot service mechanism of service tasks in the right *** results of extensive experiments show that our cloud system provides sufficient prior knowledge that can assist the robot in completing service *** is an efficient way to transmit data and reduce the computational burden on the *** using our cloud detection module,the robot system can save approximately 25% of the averageCPUusage and reduce the average detection time by 0.1 s compared to the locally deployed system,demonstrating the reliability and practicality of our proposed architecture.
Breast cancer, marked by uncontrolled cell growth in breast tissue, is the most common cancer among women and a second-leading cause of cancer-related deaths. Among its types, ductal and lobular carcinomas are the mos...
详细信息
Breast cancer, marked by uncontrolled cell growth in breast tissue, is the most common cancer among women and a second-leading cause of cancer-related deaths. Among its types, ductal and lobular carcinomas are the most prevalent, with invasive ductal carcinoma accounting for about 70–80% of cases and invasive lobular carcinoma for about 10–15%. Accurate identification is crucial for effective treatment but can be time-consuming and prone to interobserver variability. AI can rapidly analyze pathological images, providing precise, cost-effective identification, thus reducing the pathologists’ workload. This study utilizes a deep learning framework for advanced, automatic breast cancer detection and subtype identification. The framework comprises three key components: detecting cancerous patches, identifying cancer subtypes (ductal and lobular carcinoma), and predicting patient-level outcomes from whole slide images (WSI). The validation process includes visualization using Score-CAM to highlight cancer-affected areas prominently. Datasets include 111 WSIs (85 malignant from the Warwick HER2 dataset and 26 benign from pathologists). For subtype detection, there are 57 ductal and 8 lobular carcinoma cases. A total of 28,428 annotated patches were reviewed by two expert pathologists. Four pre-trained models—DenseNet-201, MobileNetV2, an ensemble of these two, and a Vision Transformer-based model—were fine-tuned and tested on the patches. Patient-level results were predicted using a majority voting technique based on the percentage of each patch type in the WSI. The Vision Transformer-based model outperformed other models in patch classification, achieving an accuracy of 96.74% for cancerous patch detection and 89.78% for cancer subtype classification. For WSI-based cancer classification, the majority voting method attained an F1-score of 99.06 and 96.13% for WSI-based cancer subtype classification. The proposed deep learning-based framework for advanced breast cancer det
Cardiovascular disease(CVD)remains a leading global health challenge due to its high mortality rate and the complexity of early diagnosis,driven by risk factors such as hypertension,high cholesterol,and irregular puls...
详细信息
Cardiovascular disease(CVD)remains a leading global health challenge due to its high mortality rate and the complexity of early diagnosis,driven by risk factors such as hypertension,high cholesterol,and irregular pulse *** diagnostic methods often struggle with the nuanced interplay of these risk factors,making early detection *** this research,we propose a novel artificial intelligence-enabled(AI-enabled)framework for CVD risk prediction that integrates machine learning(ML)with eXplainable AI(XAI)to provide both high-accuracy predictions and transparent,interpretable *** to existing studies that typically focus on either optimizing ML performance or using XAI separately for local or global explanations,our approach uniquely combines both local and global interpretability using Local Interpretable Model-Agnostic Explanations(LIME)and SHapley Additive exPlanations(SHAP).This dual integration enhances the interpretability of the model and facilitates clinicians to comprehensively understand not just what the model predicts but also why those predictions are made by identifying the contribution of different risk factors,which is crucial for transparent and informed decision-making in *** framework uses ML techniques such as K-nearest neighbors(KNN),gradient boosting,random forest,and decision tree,trained on a cardiovascular ***,the integration of LIME and SHAP provides patient-specific insights alongside global trends,ensuring that clinicians receive comprehensive and actionable *** experimental results achieve 98%accuracy with the Random Forest model,with precision,recall,and F1-scores of 97%,98%,and 98%,*** innovative combination of SHAP and LIME sets a new benchmark in CVD prediction by integrating advanced ML accuracy with robust interpretability,fills a critical gap in existing *** framework paves the way for more explainable and transparent decision-making in he
An Internet of Mobile Things (IoMT) refers to an internetworked group of pervasive devices that coordinate their motion and task execution through frequent status and data exchange. An IoMT could be serving critical a...
详细信息
暂无评论