Identifying cyberattacks that attempt to compromise digital systems is a critical function of intrusion detection systems (IDS). Data labeling difficulties, incorrect conclusions, and vulnerability to malicious data i...
详细信息
Multiagent Reinforcement Learning (MARL) plays a pivotal role in intelligent vehicle systems, offering solutions for complex decision-making, coordination, and adaptive behavior among autonomous agents. This review ai...
详细信息
Multiagent Reinforcement Learning (MARL) plays a pivotal role in intelligent vehicle systems, offering solutions for complex decision-making, coordination, and adaptive behavior among autonomous agents. This review aims to highlight the importance of fostering trust in MARL and emphasize the significance of MARL in revolutionizing intelligent vehicle systems. First, this paper summarizes the fundamental methods of MARL. Second, it identifies the limitations of MARL in safety, robustness, generalization, and ethical constraints and outlines the corresponding research methods. Then we summarize their applications in intelligent vehicle systems. Considering human interaction is essential to practical applications of MARL in various domains, the paper also analyzes the challenges associated with MARL's applications in human-machine systems. These challenges, when overcome, could significantly enhance the real-world implementation of MARL-based intelligent vehicle systems. IEEE
In the construction industry,to prevent accidents,non-destructive tests are necessary and *** impedance tomography is a new technology in non-invasive imaging in which the image of the inner part of conductive bodies ...
详细信息
In the construction industry,to prevent accidents,non-destructive tests are necessary and *** impedance tomography is a new technology in non-invasive imaging in which the image of the inner part of conductive bodies is reconstructed by the arrays of external electrodes that are connected on the periphery of the *** equipment is cheap,fast,and edge *** this imaging method,the image of electrical conductivity distribution(or its opposite;electrical impedance)of the internal parts of the target object is *** image reconstruction process is performed by injecting a precise electric current to the peripheral boundaries of the object,measuring the peripheral voltages induced from it and processing the collected *** an electrical impedance tomography system,the voltages measured in the peripheral boundaries have a non-linear equation with the electrical conductivity *** paper presents a cheap electrical Impedance Tomography(EIT)instrument for detecting impurities in the concrete.A voltage-controlled current source,a micro-controller,a set of multiplexers,a set of electrodes,and a personal computer constitute the structure of the *** conducted tests on concrete with impurities show that the designed EIT system can reveal impurities with a good accuracy in a reasonable time.
The survival rate of lung cancer relies significantly on how far the disease has spread when it is detected, how it reacts to the treatment, the patient’s overall health, and other factors. Therefore, the earlier the...
详细信息
The survival rate of lung cancer relies significantly on how far the disease has spread when it is detected, how it reacts to the treatment, the patient’s overall health, and other factors. Therefore, the earlier the lung cancer diagnosis, the higher the survival rate. For radiologists, recognizing malignant lung nodules from computed tomography (CT) scans is a challenging and time-consuming process. As a result, computer-aided diagnosis (CAD) systems have been suggested to alleviate these burdens. Deep-learning approaches have demonstrated remarkable results in recent years, surpassing traditional methods in different fields. Researchers are currently experimenting with several deep-learning strategies to increase the effectiveness of CAD systems in lung cancer detection with CT. This work proposes a deep-learning framework for detecting and diagnosing lung cancer. The proposed framework used recent deep-learning techniques in all its layers. The autoencoder technique structure is tuned and used in the preprocessing stage to denoise and reconstruct the medical lung cancer dataset. Besides, it depends on the transfer learning pre-trained models to make multi-classification among different lung cancer cases such as benign, adenocarcinoma, and squamous cell carcinoma. The proposed model provides high performance while recognizing and differentiating between two types of datasets, including biopsy and CT scans. The Cancer Imaging Archive and Kaggle datasets are utilized to train and test the proposed model. The empirical results show that the proposed framework performs well according to various performance metrics. According to accuracy, precision, recall, F1-score, and AUC metrics, it achieves 99.60, 99.61, 99.62, 99.70, and 99.75%, respectively. Also, it depicts 0.0028, 0.0026, and 0.0507 in mean absolute error, mean squared error, and root mean square error metrics. Furthermore, it helps physicians effectively diagnose lung cancer in its early stages and allows spe
This article introduces a novel Multi-agent path planning scheme based on Conflict Based Search (CBS) for heterogeneous holonomic and non-holonomic agents, designated as Heterogeneous CBS (HCBS). The proposed methodol...
详细信息
The Nong Han Chaloem Phrakiat Lotus Park is a tourist attraction and a source of learning regarding lotus ***,as a training area,it lacks appeal and learning motivation due to its conventional presentation of informat...
详细信息
The Nong Han Chaloem Phrakiat Lotus Park is a tourist attraction and a source of learning regarding lotus ***,as a training area,it lacks appeal and learning motivation due to its conventional presentation of information regarding lotus *** current study introduced the concept of smart learning in this setting to increase interest and motivation for *** neural networks(CNNs)were used for the classification of lotus plant species,for use in the development of a mobile application to display details about each *** scope of the study was to classify 11 species of lotus plants using the proposed CNN model based on different techniques(augmentation,dropout,and L2)and hyper parameters(dropout and epoch number).The expected outcome was to obtain a high-performance CNN model with reduced total parameters compared to using three different pre-trained CNN models(Inception V3,VGG16,and VGG19)as *** performance of the model was presented in terms of accuracy,F1-score,precision,and recall *** results showed that the CNN model with the augmentation,dropout,and L2 techniques at a dropout value of 0.4 and an epoch number of 30 provided the highest testing accuracy of *** best proposed model was more accurate than the pre-trained CNN models,especially compared to Inception *** addition,the number of total parameters was reduced by approximately 1.80–2.19 *** findings demonstrated that the proposed model with a small number of total parameters had a satisfactory degree of classification accuracy.
Unmanned Aerial Vehicles (UAVs) have extensive applications such as logistics transportation and aerial photography. However, UAVs are sensitive to winds. Traditional control methods, such as proportional- integral-de...
详细信息
Unmanned Aerial Vehicles (UAVs) have extensive applications such as logistics transportation and aerial photography. However, UAVs are sensitive to winds. Traditional control methods, such as proportional- integral-derivative controllers, generally fail to work well when the strength and direction of winds are changing frequently. In this work deep reinforcement learning algorithms are combined with a domain randomization method to learn robust wind-resistant hovering policies. A novel reward function is designed to guide learning. This reward function uses a constant reward to maintain a continuous flight of a UAV as well as a weight of the horizontal distance error to ensure the stability of the UAV at altitude. A five-dimensional representation of actions instead of the traditional four dimensions is designed to strengthen the coordination of wings of a UAV. We theoretically explain the rationality of our reward function based on the theories of Q-learning and reward shaping. Experiments in the simulation and real-world application both illustrate the effectiveness of our method. To the best of our knowledge, it is the first paper to use reinforcement learning and domain randomization to explore the problem of robust wind-resistant hovering control of quadrotor UAVs, providing a new way for the study of wind-resistant hovering and flying of UAVs. IEEE
This paper presents a comprehensive dataset of LoRaWAN technology path loss measurements collected in an indoor office environment, focusing on quantifying the effects of environmental factors on signal propagation. U...
详细信息
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and t...
详细信息
Drug-target interactions(DTIs) prediction plays an important role in the process of drug *** computational methods treat it as a binary prediction problem, determining whether there are connections between drugs and targets while ignoring relational types information. Considering the positive or negative effects of DTIs will facilitate the study on comprehensive mechanisms of multiple drugs on a common target, in this work, we model DTIs on signed heterogeneous networks, through categorizing interaction patterns of DTIs and additionally extracting interactions within drug pairs and target protein pairs. We propose signed heterogeneous graph neural networks(SHGNNs), further put forward an end-to-end framework for signed DTIs prediction, called SHGNN-DTI,which not only adapts to signed bipartite networks, but also could naturally incorporate auxiliary information from drug-drug interactions(DDIs) and protein-protein interactions(PPIs). For the framework, we solve the message passing and aggregation problem on signed DTI networks, and consider different training modes on the whole networks consisting of DTIs, DDIs and PPIs. Experiments are conducted on two datasets extracted from Drug Bank and related databases, under different settings of initial inputs, embedding dimensions and training modes. The prediction results show excellent performance in terms of metric indicators, and the feasibility is further verified by the case study with two drugs on breast cancer.
Dear Editor,In this letter, a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated (HOFA) systems with noises. The method can effe...
Dear Editor,In this letter, a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated (HOFA) systems with noises. The method can effectively deal with nonlinearities, constraints, and noises in the system, optimize the performance metric, and present an upper bound on the stable output of the system.
暂无评论