The continuous development of cyberattacks is threatening digital transformation endeavors worldwide and leadsto wide losses for various organizations. These dangers have proven that signature-based approaches are ins...
详细信息
The continuous development of cyberattacks is threatening digital transformation endeavors worldwide and leadsto wide losses for various organizations. These dangers have proven that signature-based approaches are insufficientto prevent emerging and polymorphic attacks. Therefore, this paper is proposing a Robust Malicious ExecutableDetection (RMED) using Host-based Machine Learning Classifier to discover malicious Portable Executable (PE)files in hosts using Windows operating systems through collecting PE headers and applying machine learningmechanisms to detect unknown infected files. The authors have collected a novel reliable dataset containing 116,031benign files and 179,071 malware samples from diverse sources to ensure the efficiency of RMED *** most effective PE headers that can highly differentiate between benign and malware files were selected totrain the model on 15 PE features to speed up the classification process and achieve real-time detection formalicious executables. The evaluation results showed that RMED succeeded in shrinking the classification timeto 91 milliseconds for each file while reaching an accuracy of 98.42% with a false positive rate equal to 1.58. Inconclusion, this paper contributes to the field of cybersecurity by presenting a comprehensive framework thatleverages Artificial Intelligence (AI) methods to proactively detect and prevent cyber-attacks.
A complete examination of Large Language Models’strengths,problems,and applications is needed due to their rising use across *** studies frequently focus on single-use situations and lack a comprehensive understandin...
详细信息
A complete examination of Large Language Models’strengths,problems,and applications is needed due to their rising use across *** studies frequently focus on single-use situations and lack a comprehensive understanding of LLM architectural performance,strengths,and *** gap precludes finding the appropriate models for task-specific applications and limits awareness of emerging LLM optimization and deployment *** this research,50 studies on 25+LLMs,including GPT-3,GPT-4,Claude 3.5,DeepKet,and hybrid multimodal frameworks like ContextDET and GeoRSCLIP,are thoroughly *** propose LLM application taxonomy by grouping techniques by task focus—healthcare,chemistry,sentiment analysis,agent-based simulations,and multimodal *** methods like parameter-efficient tuning(LoRA),quantumenhanced embeddings(DeepKet),retrieval-augmented generation(RAG),and safety-focused models(GalaxyGPT)are evaluated for dataset requirements,computational efficiency,and performance *** for ethical issues,data limited hallucinations,and KDGI-enhanced fine-tuning like Woodpecker’s post-remedy corrections are *** investigation’s scope,mad,and methods are described,but the primary results are *** work reveals that domain-specialized fine-tuned LLMs employing RAG and quantum-enhanced embeddings performbetter for context-heavy *** medical text normalization,ChatGPT-4 outperforms previous models,while two multimodal frameworks,GeoRSCLIP,increase remote ***-efficient tuning technologies like LoRA have minimal computing cost and similar performance,demonstrating the necessity for adaptive models in multiple *** discover the optimum domain-specific models,explain domain-specific fine-tuning,and present quantum andmultimodal LLMs to address scalability and cross-domain *** framework helps academics and practitioners identify,adapt,and innovate LLMs for different *** work
Industrial cyber-physical systems closely integrate physical processes with cyberspace, enabling real-time exchange of various information about system dynamics, sensor outputs, and control decisions. The connection b...
详细信息
Industrial cyber-physical systems closely integrate physical processes with cyberspace, enabling real-time exchange of various information about system dynamics, sensor outputs, and control decisions. The connection between cyberspace and physical processes results in the exposure of industrial production information to unprecedented security risks. It is imperative to develop suitable strategies to ensure cyber security while meeting basic performance *** the perspective of control engineering, this review presents the most up-to-date results for privacy-preserving filtering,control, and optimization in industrial cyber-physical systems. Fashionable privacy-preserving strategies and mainstream evaluation metrics are first presented in a systematic manner for performance evaluation and engineering *** discussion discloses the impact of typical filtering algorithms on filtering performance, specifically for privacy-preserving Kalman filtering. Then, the latest development of industrial control is systematically investigated from consensus control of multi-agent systems, platoon control of autonomous vehicles as well as hierarchical control of power systems. The focus thereafter is on the latest privacy-preserving optimization algorithms in the framework of consensus and their applications in distributed economic dispatch issues and energy management of networked power systems. In the end, several topics for potential future research are highlighted.
In the realm of deep learning, Generative Adversarial Networks (GANs) have emerged as a topic of significant interest for their potential to enhance model performance and enable effective data augmentation. This paper...
详细信息
Purpose: The rapid spread of COVID-19 has resulted in significant harm and impacted tens of millions of people globally. In order to prevent the transmission of the virus, individuals often wear masks as a protective ...
详细信息
The rapid advancement and proliferation of Cyber-Physical Systems (CPS) have led to an exponential increase in the volume of data generated continuously. Efficient classification of this streaming data is crucial for ...
详细信息
The Internet of Everything(IoE)based cloud computing is one of the most prominent areas in the digital big data *** approach allows efficient infrastructure to store and access big real-time data and smart IoE service...
详细信息
The Internet of Everything(IoE)based cloud computing is one of the most prominent areas in the digital big data *** approach allows efficient infrastructure to store and access big real-time data and smart IoE services from the *** IoE-based cloud computing services are located at remote locations without the control of the data *** data owners mostly depend on the untrusted Cloud Service Provider(CSP)and do not know the implemented security *** lack of knowledge about security capabilities and control over data raises several security *** Acid(DNA)computing is a biological concept that can improve the security of IoE big *** IoE big data security scheme consists of the Station-to-Station Key Agreement Protocol(StS KAP)and Feistel cipher *** paper proposed a DNA-based cryptographic scheme and access control model(DNACDS)to solve IoE big data security and access *** experimental results illustrated that DNACDS performs better than other DNA-based security *** theoretical security analysis of the DNACDS shows better resistance capabilities.
Total shoulder arthroplasty is a standard restorative procedure practiced by orthopedists to diagnose shoulder arthritis in which a prosthesis replaces the whole joint or a part of the *** is often challenging for doc...
详细信息
Total shoulder arthroplasty is a standard restorative procedure practiced by orthopedists to diagnose shoulder arthritis in which a prosthesis replaces the whole joint or a part of the *** is often challenging for doctors to identify the exact model and manufacturer of the prosthesis when it is *** paper proposes a transfer learning-based class imbalance-aware prosthesis detection method to detect the implant’s manufacturer automatically from shoulder X-ray *** framework of the method proposes a novel training approach and a new set of batch-normalization,dropout,and fully convolutional layers in the head *** employs cyclical learning rates and weighting-based loss calculation *** modifications aid in faster convergence,avoid local-minima stagnation,and remove the training bias caused by imbalanced *** proposed method is evaluated using seven well-known pre-trained models of VGGNet,ResNet,and DenseNet *** is performed on a shoulder implant benchmark dataset consisting of 597 shoulder X-ray *** proposed method improves the classification performance of all pre-trained models by 10–12%.The DenseNet-201-based variant has achieved the highest classification accuracy of 89.5%,which is 10%higher than existing ***,to validate and generalize the proposed method,the existing baseline dataset is supplemented to six classes,including samples of two more implant *** results have shown average accuracy of 86.7%for the extended dataset and show the preeminence of the proposed method.
Audio Deepfakes, which are highly realistic fake audio recordings driven by AI tools that clone human voices, With Advancements in Text-Based Speech Generation (TTS) and Vocal Conversion (VC) technologies have enabled...
详细信息
Audio Deepfakes, which are highly realistic fake audio recordings driven by AI tools that clone human voices, With Advancements in Text-Based Speech Generation (TTS) and Vocal Conversion (VC) technologies have enabled it easier to create realistic synthetic and imitative speech, making audio Deepfakes a common and potentially dangerous form of deception. Well-known people, like politicians and celebrities, are often targeted. They get tricked into saying controversial things in fake recordings, causing trouble on social media. Even kids’ voices are cloned to scam parents into ransom payments, etc. Therefore, developing effective algorithms to distinguish Deepfake audio from real audio is critical to preventing such frauds. Various Machine learning (ML) and Deep learning (DL) techniques have been created to identify audio Deepfakes. However, most of these solutions are trained on datasets in English, Portuguese, French, and Spanish, expressing concerns regarding their correctness for other languages. The main goal of the research presented in this paper is to evaluate the effectiveness of deep learning neural networks in detecting audio Deepfakes in the Urdu language. Since there’s no suitable dataset of Urdu audio available for this purpose, we created our own dataset (URFV) utilizing both genuine and fake audio recordings. The Urdu Original/real audio recordings were gathered from random youtube podcasts and generated as Deepfake audios using the RVC model. Our dataset has three versions with clips of 5, 10, and 15 seconds. We have built various deep learning neural networks like (RNN+LSTM, CNN+attention, TCN, CNN+RNN) to detect Deepfake audio made through imitation or synthetic techniques. The proposed approach extracts Mel-Frequency-Cepstral-Coefficients (MFCC) features from the audios in the dataset. When tested and evaluated, Our models’ accuracy across datasets was noteworthy. 97.78% (5s), 98.89% (10s), and 98.33% (15s) were remarkable results for the RNN+LSTM
Efficient botnet detection is of great security importance and has been the focus of researchers in recent years. Botnet detection is also a difficult task due to the difficulty in distinguishing it from normal traffi...
详细信息
暂无评论