咨询与建议

限定检索结果

文献类型

  • 767 篇 期刊文献
  • 90 篇 会议
  • 3 册 图书

馆藏范围

  • 860 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 694 篇 理学
    • 407 篇 物理学
    • 325 篇 数学
    • 143 篇 统计学(可授理学、...
    • 94 篇 化学
    • 85 篇 生物学
    • 53 篇 系统科学
    • 32 篇 地球物理学
    • 21 篇 天文学
  • 490 篇 工学
    • 160 篇 计算机科学与技术...
    • 120 篇 软件工程
    • 88 篇 材料科学与工程(可...
    • 76 篇 力学(可授工学、理...
    • 68 篇 电子科学与技术(可...
    • 65 篇 电气工程
    • 63 篇 控制科学与工程
    • 61 篇 动力工程及工程热...
    • 61 篇 化学工程与技术
    • 58 篇 信息与通信工程
    • 58 篇 生物工程
    • 54 篇 生物医学工程(可授...
    • 45 篇 光学工程
    • 25 篇 机械工程
    • 19 篇 核科学与技术
    • 14 篇 仪器科学与技术
    • 12 篇 航空宇航科学与技...
  • 47 篇 管理学
    • 25 篇 图书情报与档案管...
    • 21 篇 管理科学与工程(可...
    • 11 篇 工商管理
  • 16 篇 医学
    • 15 篇 临床医学
    • 12 篇 基础医学(可授医学...
  • 12 篇 农学
  • 9 篇 经济学
  • 7 篇 法学
  • 1 篇 教育学

主题

  • 17 篇 molecular dynami...
  • 13 篇 density function...
  • 12 篇 machine learning
  • 11 篇 microstructure
  • 11 篇 stochastic syste...
  • 10 篇 inverse problems
  • 10 篇 classical statis...
  • 9 篇 deep neural netw...
  • 9 篇 gravitational wa...
  • 8 篇 sphere packings
  • 8 篇 electronic struc...
  • 8 篇 spheres
  • 7 篇 first-principles...
  • 7 篇 relativistic hea...
  • 6 篇 eigenvalues and ...
  • 6 篇 hadron-hadron in...
  • 6 篇 ground state
  • 6 篇 ground state (qu...
  • 6 篇 diffusion
  • 6 篇 mathematical mod...

机构

  • 110 篇 program in appli...
  • 63 篇 department of ch...
  • 62 篇 program in appli...
  • 60 篇 department of ch...
  • 42 篇 department of ph...
  • 38 篇 department of ph...
  • 29 篇 program in appli...
  • 29 篇 program in appli...
  • 25 篇 beijing institut...
  • 24 篇 princeton instit...
  • 21 篇 china university...
  • 20 篇 program in appli...
  • 19 篇 university of sc...
  • 19 篇 faculty of elect...
  • 19 篇 università degli...
  • 19 篇 physik departmen...
  • 19 篇 department of ma...
  • 18 篇 china institute ...
  • 18 篇 physics departme...
  • 18 篇 a.i. alikhanyan ...

作者

  • 75 篇 salvatore torqua...
  • 57 篇 weinan e.
  • 57 篇 torquato salvato...
  • 31 篇 singer amit
  • 30 篇 zhang linfeng
  • 28 篇 c. kim
  • 26 篇 frank h. stillin...
  • 24 篇 s. torquato
  • 20 篇 weinan e
  • 19 篇 wang han
  • 18 篇 car roberto
  • 16 篇 d. röhrich
  • 16 篇 k. oyama
  • 16 篇 o. karavichev
  • 16 篇 d. peresunko
  • 16 篇 r. xu
  • 16 篇 m. s. islam
  • 16 篇 p. kurashvili
  • 16 篇 s. grigoryan
  • 16 篇 r. bailhache

语言

  • 819 篇 英文
  • 38 篇 其他
  • 2 篇 中文
检索条件"机构=Department of Geosciences and Program in Applied and Computational Mathematics"
860 条 记 录,以下是221-230 订阅
排序:
Ground state energy functional with Hartree-Fock efficiency and chemical accuracy
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Yixiao Zhang, Linfeng Wang, Han Weinan, E. Program in Applied and Computational Mathematics Princeton University PrincetonNJ United States Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Huayuan Road 6 Beijing100088 China Department of Mathematics Princeton University PrincetonNJ United States
We introduce the Deep Post–Hartree–Fock (DeePHF) method, a machine learning-based scheme for constructing accurate and transferable models for the ground-state energy of electronic structure problems. DeePHF predict... 详细信息
来源: 评论
DeePKS: A comprehensive data-driven approach towards chemically accurate density functional theory
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Yixiao Zhang, Linfeng Wang, Han Weinan, E. Program in Applied and Computational Mathematics Princeton University PrincetonNJ United States Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Huayuan Road 6 Beijing100088 China Department of Mathematics Princeton University PrincetonNJ United States
We propose a general machine learning-based framework for building an accurate and widely-applicable energy functional within the framework of generalized Kohn-Sham density functional theory. To this end, we develop a... 详细信息
来源: 评论
Time-frequency analysis and determinantal point processes  13
Time-frequency analysis and determinantal point processes
收藏 引用
13th International Conference on Theoretical and computational Acoustics, ICTCA 2017
作者: Abreu, Luís Daniel Gröchenig, Karlheinz Pereira, João M. Romero, José L. Torquato, Salvatore Acoustics Research Institute Austrian Academy of Sciences Vienna Austria NuHAG Faculty of Mathematics University of Vienna Vienna Austria Program in Applied and Computational Mathematics Princeton University New Jersey United States Princeton Materials Institute Department of Chemistry Princeton University New Jersey United States
来源: 评论
The knowledge gradient for sequential decision making with stochastic binary feedbacks  33
The knowledge gradient for sequential decision making with s...
收藏 引用
33rd International Conference on Machine Learning, ICML 2016
作者: Wang, Yingfei Wang, Chu Powell, Warren Department of Computer Science Princeton University PrincetonNJ08540 United States Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Department of Operations Research and Financial Engineering Princeton University PrincetonNJ08544 United States
We consider the problem of sequentially making decisions that are rewarded by "successes" and "failures" which can be predicted through an unknown relationship that depends on a partially controlla... 详细信息
来源: 评论
Level sets of quantum control landscapes
Level sets of quantum control landscapes
收藏 引用
International Symposium on Communications Control and Signal Processing (ISCCSP)
作者: Vincent Beltrani Jason Dominy Tak-San Ho Herschel Rabitz Department of Chemistry Princeton University NJ USA Program in Applied and Computational Mathematics Princeton University NJ USA
A controlled quantum system possesses a search landscape defined by the observable value as a functional of the control field. Within the search landscape, there exist level sets of controls giving the same observable... 详细信息
来源: 评论
An L2 Analysis of Reinforcement Learning in High Dimensions with Kernel and Neural Network Approximation
arXiv
收藏 引用
arXiv 2021年
作者: Long, Jihao Han, Jiequn Weinan, E. Program of Applied and Computational Mathematics Princeton University United States Department of Mathematics Princeton University United States Center for Computational Mathematics Flatiron Institute School of Mathematical Sciences Peking University
Reinforcement learning (RL) algorithms based on high-dimensional function approximation have achieved tremendous empirical success in large-scale problems with an enormous number of states. However, most analysis of s... 详细信息
来源: 评论
Machine learning based non-Newtonian fluid model with molecular fidelity
arXiv
收藏 引用
arXiv 2020年
作者: Lei, Huan Wu, Lei Weinan, E. Department of Computational Mathematics Science & Engineering Department of Statistics & Probability Michigan State University MI48824 United States Department of Mathematics and Program in Applied and Computational Mathematics Princeton University NJ08544 United States
We introduce a machine-learning-based framework for constructing continuum non-Newtonian fluid dynamics model directly from a micro-scale description. Polymer solution is used as an example to demonstrate the essentia... 详细信息
来源: 评论
Covariance estimation using conjugate gradient for 3D classification in CRYO-EM
Covariance estimation using conjugate gradient for 3D classi...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Joakim Andén Eugene Katsevich Amit Singer Program in Applied and Computational Mathematics Princeton University Princeton NJ Department of Statistics Stanford University Stanford CA
Classifying structural variability in noisy projections of biological macromolecules is a central problem in Cryo-EM. In this work, we build on a previous method for estimating the covariance matrix of the three-dimen... 详细信息
来源: 评论
A trace bound for the hereditary discrepancy  00
A trace bound for the hereditary discrepancy
收藏 引用
Proceedings of the sixteenth annual symposium on computational geometry
作者: Bernard Chazelle Alexey Lvov Department of Computer Science Princeton University and NEC Research Institute Program in Applied and Computational Mathematics Princeton University
来源: 评论
Sigma-delta quantization and finite frames
Sigma-delta quantization and finite frames
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: J.J. Benedetto O. Yilmaz A.M. Powell Department of Mathematics University of Maryland College Park MD USA Program in Applied and Computational Mathematics Princeton University Princeton NJ USA
It is shown that sigma-delta (/spl Sigma//spl Delta/) algorithms can be used effectively to quantize finite frame expansions for R/sup d/. Error estimates for various quantized frame expansions are derived, and, in pa... 详细信息
来源: 评论