We propose a unified framework that extends the inference methods for classical hidden Markov models to continuous settings, where both the hidden states and observations occur in continuous time. Two different settin...
详细信息
This paper develops upper and lower bounds on the influence measure in a network, more precisely, the expected number of nodes that a seed set can influence in the independent cascade model. In particular, our bounds ...
ISBN:
(纸本)9781510860964
This paper develops upper and lower bounds on the influence measure in a network, more precisely, the expected number of nodes that a seed set can influence in the independent cascade model. In particular, our bounds exploit nonbacktracking walks, Fortuin-Kasteleyn-Ginibre type inequalities, and are computed by message passing algorithms. Nonbacktracking walks have recently allowed for headways in community detection, and this paper shows that their use can also impact the influence computation. Further, we provide parameterized versions of the bounds that control the trade-off between the efficiency and the accuracy. Finally, the tightness of the bounds is illustrated with simulations on various network models.
This paper develops deterministic upper and lower bounds on the influence measure in a network, more precisely, the expected number of nodes that a seed set can influence in the independent cascade model. In particula...
详细信息
This paper develops deterministic upper and lower bounds on the influence measure in a network, more precisely, the expected number of nodes that a seed set can influence in the independent cascade model. In particular, our bounds exploit r-nonbacktracking walks and Fortuin--Kasteleyn--Ginibre (FKG) type inequalities, and are computed by message passing algorithms. Further, we provide parameterized versions of the bounds that control the trade-off between efficiency and accuracy. Finally, the tightness of the bounds is illustrated on various network models.
We explore time-based solvers for linear standing-wave problems, especially the oscillatory Helmholtz equation. Here, we show how to accelerate the convergence properties of timestepping. We introduce a new time-based...
We explore time-based solvers for linear standing-wave problems, especially the oscillatory Helmholtz equation. Here, we show how to accelerate the convergence properties of timestepping. We introduce a new time-based solver that we call phase-adjusted time-averaging (PATA), which we couple to timestepping to form the PATA-TS solver. Numerical experiments indicate that the PATA-TS solver is faster than the PATA solver and timestepping by a factor of 1.2 and 1.5 or more, respectively. We also explain why the PATA-TS solver is robust, efficient, and easy to program for a variety of practical applications.
By analyzing the momentum distribution obtained from path integral and phonon calculations we find that the protons in hexagonal ice experience an anisotropic quasiharmonic effective potential with three distinct prin...
详细信息
By analyzing the momentum distribution obtained from path integral and phonon calculations we find that the protons in hexagonal ice experience an anisotropic quasiharmonic effective potential with three distinct principal frequencies that reflect molecular orientation. Due to the importance of anisotropy, anharmonic features of the environment cannot be extracted from existing experimental distributions that involve the spherical average. The full directional distribution is required, and we give a theoretical prediction for this quantity that could be verified in future experiments. Within the quasiharmonic context, anharmonicity in the ground-state dynamics of the proton is substantial and has quantal origin, a finding that impacts the interpretation of several spectroscopies.
Using first-principles calculation, we propose an interface structure for single triple-layer FeSe on the SrTiO3(001) surface, a high-Tc superconductor found recently. The key component of this structure is the oxygen...
详细信息
Using first-principles calculation, we propose an interface structure for single triple-layer FeSe on the SrTiO3(001) surface, a high-Tc superconductor found recently. The key component of this structure is the oxygen deficiency on the top layer of the SrTiO3 substrate, as a result of Se etching used in preparing the high-Tc samples. The O vacancies strongly bind the FeSe triple layer to the substrate giving rise to a (2×1) reconstruction, as observed by scanning tunneling microscopy. The enhanced binding correlates to the significant increase of Tc observed in experiment. The O vacancies also serve as the source of electron doping, which modifies the Fermi surface of the first FeSe layer by filling the hole pocket near the center of the surface Brillouin zone, as suggested from angle-resolved photoemission spectroscopy measurement.
The radiative transfer equation (RTE) arises in a variety of applications. The equation is challenging to solve numerically for a couple of reasons: high dimensionality, integro-differential form, highly forward-peake...
详细信息
In this paper,we propose a simple energy decaying iterative thresholding algorithm to solve the two-phase minimum compliance *** material domain is implicitly represented by its characteristic function,and the problem...
详细信息
In this paper,we propose a simple energy decaying iterative thresholding algorithm to solve the two-phase minimum compliance *** material domain is implicitly represented by its characteristic function,and the problem is formulated into a minimization problem by the principle of minimum complementary *** prove that the energy is decreasing in each *** effective continuation schemes are proposed to avoid trapping into the local *** results on 2D isotropic linear material demonstrate the effectiveness of the proposed methods.
暂无评论