The lexicon is an essential component in the hybrid automatic speech recognition (ASR) system. However, a high-quality lexicon requires significant efforts from the linguistic experts and is difficult to obtain, espec...
详细信息
The immersive nature of virtual reality (VR) gaming is significantly improved by the implementation of dynamic environmental systems. This paper focuses on the development and impact of a dynamic day and night cycle i...
详细信息
This research discusses the method of dataset collection automatization for microwave filter synthesis by integrating machine learning techniques, thus reducing development time. Utilizing the 3D electromagnetic analy...
详细信息
The 3GPP vehicle-to-everything (C-V2X) technology is a key solution to provide communication services for applications of intelligent transportation systems (ITS). According to the C-V2X specification, vehicles are al...
详细信息
Sentiment analysis, a critical branch of Natural Language Processing (NLP), is pivotal for uncovering the emotional undertones within textual data, thereby revealing public sentiments on diverse topics. This study con...
详细信息
Emotion recognition in text has become an essential research area within artificial intelligence and natural language processing due to its applications in sentiment analysis, human-computer interaction, and social me...
详细信息
With the increasing adoption of electric vehicles, their end-of-life management is a timely matter. This requires recognizing the upcoming volume of retired electric-vehicle-batteries to the waste stream. The projecti...
详细信息
Cyber-Physical System (CPS) devices are increasing exponentially. Lacking confidentiality creates a vulnerable network. Thus, demanding the overall system with the latest and robust solutions for the defence mechanism...
详细信息
Cyber-Physical System (CPS) devices are increasing exponentially. Lacking confidentiality creates a vulnerable network. Thus, demanding the overall system with the latest and robust solutions for the defence mechanisms with low computation cost, increased integrity, and surveillance. The proposal of a mechanism that utilizes the features of authenticity measures using the Destination Sequence Distance Vector (DSDV) routing protocol which applies to the multi-WSN (Wireless Sensor Network) of IoT devices in CPS which is developed for the Device-to-Device (D2D) authentication developed from the local-chain and public chain respectively combined with the Software Defined Networking (SDN) control and monitoring system using switches and controllers that will route the packets through the network, identify any false nodes, take preventive measures against them and preventing them for any future problems. Next, the system is powered by Blockchain cryptographic features by utilizing the TrustChain features to create a private, secure, and temper-free ledger of the transactions performed inside the network. Results are achieved in the legitimate devices connecting to the network, transferring their packets to their destination under supervision, reporting whenever a false node is causing hurdles, and recording the transactions for temper-proof records. Evaluation results based on 1000+ transactions illustrate that the proposed mechanism not only outshines most aspects of Cyber-Physical systems but also consumes less computation power with a low latency of 0.1 seconds only.
Robots are increasingly being deployed in densely populated environments, such as homes, hotels, and office buildings, where they rely on explicit instructions from humans to perform tasks. However, complex tasks ofte...
详细信息
Robots are increasingly being deployed in densely populated environments, such as homes, hotels, and office buildings, where they rely on explicit instructions from humans to perform tasks. However, complex tasks often require multiple instructions and prolonged monitoring, which can be time-consuming and demanding for users. Despite this, there is limited research on enabling robots to autonomously generate tasks based on real-life scenarios. Advanced intelligence necessitates robots to autonomously observe and analyze their environment and then generate tasks autonomously to fulfill human requirements without explicit commands. To address this gap, we propose the autonomous generation of navigation tasks using natural language dialogues. Specifically, a robot autonomously generates tasks by analyzing dialogues involving multiple persons in a real office environment to facilitate the completion of item transportation between various *** propose the leveraging of a large language model(LLM) through chain-of-thought prompting to generate a navigation sequence for a robot from dialogues. We also construct a benchmark dataset consisting of 625 multiperson dialogues using the generation capability of LLMs. Evaluation results and real-world experiments in an office building demonstrate the effectiveness of the proposed method.
In task offloading, the movement of vehicles causes the switching of connected RSUs and servers, which may lead to task offloading failure or high service delay. In this paper, we analyze the impact of vehicle movemen...
详细信息
In task offloading, the movement of vehicles causes the switching of connected RSUs and servers, which may lead to task offloading failure or high service delay. In this paper, we analyze the impact of vehicle movements on task offloading and reveal that data preparation time for task execution can be minimized via forward-looking scheduling. Then, a Bi-LSTM-based model is proposed to predict the trajectories of vehicles. The service area is divided into several equal-sized grids. If the actual position of the vehicle and the predicted position by the model belong to the same grid, the prediction is considered correct, thereby reducing the difficulty of vehicle trajectory prediction. Moreover, we propose a scheduling strategy for delay optimization based on the vehicle trajectory prediction. Considering the inevitable prediction error, we take some edge servers around the predicted area as candidate execution servers and the data required for task execution are backed up to these candidate servers, thereby reducing the impact of prediction deviations on task offloading and converting the modest increase of resource overheads into delay reduction in task offloading. Simulation results show that, compared with other classical schemes, the proposed strategy has lower average task offloading delays.
暂无评论