咨询与建议

限定检索结果

文献类型

  • 787 篇 期刊文献
  • 679 篇 会议
  • 23 册 图书

馆藏范围

  • 1,489 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 963 篇 工学
    • 713 篇 计算机科学与技术...
    • 595 篇 软件工程
    • 217 篇 信息与通信工程
    • 135 篇 控制科学与工程
    • 126 篇 电气工程
    • 124 篇 生物工程
    • 98 篇 生物医学工程(可授...
    • 63 篇 电子科学与技术(可...
    • 59 篇 光学工程
    • 55 篇 机械工程
    • 49 篇 仪器科学与技术
    • 42 篇 交通运输工程
    • 41 篇 化学工程与技术
    • 38 篇 安全科学与工程
    • 34 篇 网络空间安全
    • 33 篇 动力工程及工程热...
  • 538 篇 理学
    • 272 篇 数学
    • 155 篇 生物学
    • 108 篇 统计学(可授理学、...
    • 105 篇 物理学
    • 66 篇 系统科学
    • 54 篇 化学
  • 326 篇 管理学
    • 183 篇 管理科学与工程(可...
    • 156 篇 图书情报与档案管...
    • 101 篇 工商管理
  • 126 篇 医学
    • 105 篇 临床医学
    • 82 篇 基础医学(可授医学...
    • 49 篇 药学(可授医学、理...
    • 43 篇 公共卫生与预防医...
  • 51 篇 法学
    • 45 篇 社会学
  • 31 篇 经济学
  • 22 篇 农学
  • 17 篇 教育学
  • 4 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 43 篇 artificial intel...
  • 42 篇 deep learning
  • 40 篇 machine learning
  • 33 篇 training
  • 32 篇 data mining
  • 28 篇 semantics
  • 28 篇 accuracy
  • 25 篇 predictive model...
  • 23 篇 knowledge engine...
  • 21 篇 internet of thin...
  • 21 篇 feature extracti...
  • 19 篇 reinforcement le...
  • 19 篇 forecasting
  • 18 篇 computational mo...
  • 18 篇 convolutional ne...
  • 17 篇 decision making
  • 16 篇 security
  • 16 篇 data models
  • 15 篇 neural networks
  • 14 篇 information syst...

机构

  • 36 篇 school of comput...
  • 26 篇 school of inform...
  • 18 篇 department of ma...
  • 15 篇 university of ch...
  • 12 篇 college of compu...
  • 10 篇 sron netherlands...
  • 9 篇 department of da...
  • 9 篇 department of as...
  • 9 篇 school of scienc...
  • 9 篇 faculty of scien...
  • 9 篇 hiroshima astrop...
  • 9 篇 department of ph...
  • 9 篇 pillar of inform...
  • 9 篇 department of ph...
  • 9 篇 school of data s...
  • 9 篇 national institu...
  • 9 篇 key laboratory o...
  • 9 篇 faculty of educa...
  • 9 篇 graduate school ...
  • 9 篇 department of ph...

作者

  • 33 篇 niyato dusit
  • 24 篇 xiong zehui
  • 20 篇 liu hongyan
  • 20 篇 he jun
  • 18 篇 du xiaoyong
  • 18 篇 kang jiawen
  • 17 篇 du hongyang
  • 11 篇 uhler caroline
  • 11 篇 zhao zhang
  • 10 篇 meng wang
  • 10 篇 stumme gerd
  • 9 篇 uchida hiroyuki
  • 9 篇 kilbourne caroli...
  • 9 篇 tamura keisuke
  • 9 篇 okajima takashi
  • 9 篇 pottschmidt katj...
  • 9 篇 murakami hiroshi
  • 9 篇 sun geng
  • 9 篇 markevitch maxim
  • 9 篇 yamaguchi hiroya

语言

  • 1,348 篇 英文
  • 125 篇 其他
  • 16 篇 中文
  • 1 篇 西班牙文
  • 1 篇 日文
检索条件"机构=Department of Information Systems Data and Knowledge Engineering"
1489 条 记 录,以下是1161-1170 订阅
排序:
Speech emotion recognition with acoustic and lexical features  40
Speech emotion recognition with acoustic and lexical feature...
收藏 引用
40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015
作者: Jin, Qin Li, Chengxin Chen, Shizhe Wu, Huimin Computer Science Department School of Information Renmin University of China Beijing China Key Lab of Data Engineering and Knowledge Engineering Ministry of Education Renmin University of China Beijing China
In this paper we explore one of the key aspects in building an emotion recognition system: generating suitable feature representations. We generate feature representations from both acoustic and lexical levels. At the... 详细信息
来源: 评论
Big data Research in Italy: A Perspective
收藏 引用
engineering 2016年 第2期2卷 163-170页
作者: Sonia Bergamaschi Emanuele Carlini Michelangelo Ceci Barbara Furletti Fosca Giannotti Donato Malerba Mario Mezzanzanica Anna Monreale Gabriella Pasi Dino Pedreschi Raffele Perego Salvatore Ruggieri Department of Engneering "Enzo Ferrari " University of Modena and Reggio Emilia Modena 41125 Italy High Performance Computing Laboratory Institute of Information Science and Technologies of the Italian National Research Council (ISTI-CNR) Pisa 56124 Italy Department of Computer Science University ofBari Aldo Moro Bari 70125 Italy Knowledge Discovery and Data Mining Laboratory ISTI-CNR Pisa 56127 Italy Big Data Laboratory National Interuniversity Consortium for Informatics Rome 00185 Italy Department of Statistics and Quantitative Methods University of Milano-Bicocca Milan 20126 Italy Department of Computer Science Systems and Communications University of Milano-Bicocca Milan 20126 Italy Department of Computer 5denee University of Pisa Pisa 56127 Italy
The aim of this article is to synthetically describe the research projects that a selection of Italian univer- sities is undertaking in the context of big data. Far from being exhaustive, this article has the objectiv... 详细信息
来源: 评论
Big data Analytics for Earth Sciences:the EarthServer approach
收藏 引用
International Journal of Digital Earth 2016年 第1期9卷 3-29页
作者: Peter Baumann Paolo Mazzetti Joachim Ungar Roberto Barbera Damiano Barboni Alan Beccati Lorenzo Bigagli Enrico Boldrini Riccardo Bruno Antonio Calanducci Piero Campalani Oliver Clements Alex Dumitrua,Mike Grant Pasquale Herzig George Kakaletris John Laxton Panagiota Koltsida Kinga Lipskoch Alireza Rezaei Mahdiraji Simone Mantovani Vlad Merticariu Antonio Messina Dimitar Misev Stefano Natali Stefano Nativi Jelmer Oosthoek Marco Pappalardo James Passmore Angelo Pio Rossi Francesco Rundo Marcus Sen Vittorio Sorbera Don Sullivan Mario Torrisi Leonardo Trovato Maria Grazia Veratelli Sebastian Wagner Large-Scale Scientific Information Systems Jacobs UniversityBremenGermany Rasdaman GmbH BremenGermany CNR-IIA National Research Council of ItalyInstitute of Atmospheric Pollution ResearchFlorenceItaly EOX IT Services GmbH ViennaAustria Consorzio COMETA CataniaItaly Division of Catania Italian National Institute for Nuclear PhysicsCataniaItaly Department of Physics and Astronomy University of CataniaCataniaItaly MEEO S.r.l. FerraraItaly Plymouth Marine Laboratory PlymouthUK Fraunhofer IGD DarmstadtGermany Athena Research and Innovation Center in Information Communication&Knowledge Technologies AthensGreece British Geological Survey EdinburghUK Software Engineering Italia S.r.l. CataniaItaly British Geological Survey KeyworthUK NASA Ames Research Center Moffett FieldCAUSA
Big data Analytics is an emerging field since massive storage and computing capabilities have been made available by advanced *** and Environmental sciences are likely to benefit from Big data Analytics techniques sup... 详细信息
来源: 评论
VID Join: Mapping Trajectories to Points of Interest to Support Location-Based Services
收藏 引用
Journal of Computer Science & Technology 2015年 第4期30卷 725-744页
作者: 商烁 谢珂心 郑凯 刘家俊 文继荣 Department of Computer Science China University of Petroleum Beijing 102249 China School of Information Technology and Electrical Engineering The University of Queensland Brisbane QLD 4072 Australia School of Computer Science and Technology Soochow University Suzhou 215006 China Commonwealth Scientific and Industrial Research Organisation Kenmore QLD 4069 Australia Key Laboratory of Data Engineering and Knowledge Engineering Renmin University of China Beijing 100080 China
Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here, trajectories are traveling histories of moving objects (e.g., tr... 详细信息
来源: 评论
Pathological Brain Detection Based on Online Sequential Extreme Learning Machine
Pathological Brain Detection Based on Online Sequential Extr...
收藏 引用
2016 IEEE International Conference on Progress in Informatics and Computing
作者: Siyuan Lu Hainan Wang Xueyan Wu Shuihua Wang School of Computer Science and Technology Nanjing Normal University State Key Lab of CAD & CG Zhejiang University Key laboratory of symbolic computation and knowledge engineering of ministry of education Jilin University Key Laboratory of Statistical information technology and data mining State Statistics Bureau Department of Electrical Engineering The City College of New YorkCUNY
Magnetic resonance imaging(MRI) is a kind of imaging modality, which offers clearer images of soft tissues than computed tomography(CT). It is especially suitable for brain disease detection. It is beneficial to detec... 详细信息
来源: 评论
Irregular heartbeats detection using tensors and Support Vector Machines
Irregular heartbeats detection using tensors and Support Vec...
收藏 引用
Computers in Cardiology (CinC)
作者: Alexander A. Suárez León Griet Goovaerts Carlos R. Vázquez Seisdedos Sabine Van Huffel Electrical Engineering Faculty Universidad de Oriente Santiago de Cuba Santiago de Cuba CU iMinds Medical Information Technologies Belgium Department of Electrical Engineering-ESAT KU Leuven Belgium STADIUS Centre for Dynamical Systems Signal Processing and Data Analytics Katholieke Universiteit Leuven Leuven Flanders BE
The automatic analysis of Heart Rate Variability in records of ambulatory electrocardiogram (AECG) requires the detection of irregular heartbeats which cannot be included in the ansalysis. This article presents a nove... 详细信息
来源: 评论
Adaptive class association rule mining for human activity recognition  6
Adaptive class association rule mining for human activity re...
收藏 引用
6th International Workshop on Mining Ubiquitous and Social Environments, MUSE 2015
作者: Atzmueller, Martin Kibanov, Mark Hayat, Naveed Trojahn, Matthias Kroll, Dennis University of Kassel Research Center for Information System Design Knowledge and Data Engineering Group Kassel Germany Volkswagen AG Wolfsburg Germany University of Kassel Research Center for Information System Design Department for Communication Technology Kassel Germany
The analysis of human activity data is an important research area in the context of ubiquitous and social environments. Using sensor data obtained by mobile devices, e. g., utilizing accelerometer sensors contained in... 详细信息
来源: 评论
26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 Antwerp, Belgium. 15-20 July 2017 Abstracts
收藏 引用
BMC NEUROSCIENCE 2017年 第SUPPL 1期18卷 95-176页
作者: [Anonymous] Department of Neuroscience Yale University New Haven CT 06520 USA Department Physiology & Pharmacology SUNY Downstate Brooklyn NY 11203 USA NYU School of Engineering 6 MetroTech Center Brooklyn NY 11201 USA Departament de Matemàtica Aplicada Universitat Politècnica de Catalunya Barcelona 08028 Spain Institut de Neurobiologie de la Méditerrannée (INMED) INSERM UMR901 Aix-Marseille Univ Marseille France Center of Neural Science New York University New York NY USA Aix-Marseille Univ INSERM INS Inst Neurosci Syst Marseille France Laboratoire de Physique Théorique et Modélisation CNRS UMR 8089 Université de Cergy-Pontoise 95300 Cergy-Pontoise Cedex France Department of Mathematics and Computer Science ENSAT Abdelmalek Essaadi’s University Tangier Morocco Laboratory of Natural Computation Department of Information and Electrical Engineering and Applied Mathematics University of Salerno 84084 Fisciano SA Italy Department of Medicine University of Salerno 84083 Lancusi SA Italy Dipartimento di Fisica Università degli Studi Aldo Moro Bari and INFN Sezione Di Bari Italy Data Analysis Department Ghent University Ghent Belgium Coma Science Group University of Liège Liège Belgium Cruces Hospital and Ikerbasque Research Center Bilbao Spain BIOtech Department of Industrial Engineering University of Trento and IRCS-PAT FBK 38010 Trento Italy Department of Data Analysis Ghent University Ghent 9000 Belgium The Wellcome Trust Centre for Neuroimaging University College London London WC1N 3BG UK Department of Electronic Engineering NED University of Engineering and Technology Karachi Pakistan Blue Brain Project École Polytechnique Fédérale de Lausanne Lausanne Switzerland Departement of Mathematics Swansea University Swansea Wales UK Laboratory for Topology and Neuroscience at the Brain Mind Institute École polytechnique fédérale de Lausanne Lausanne Switzerland Institute of Mathematics University of Aberdeen Aberdeen Scotland UK Department of Integrativ
来源: 评论
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
arXiv
收藏 引用
arXiv 2018年
作者: Bakas, Spyridon Reyes, Mauricio Jakab, Andras Bauer, Stefan Rempfler, Markus Crimi, Alessandro Shinohara, Russell Takeshi Berger, Christoph Ha, Sung Min Rozycki, Martin Prastawa, Marcel Alberts, Esther Lipkova, Jana Freymann, John Kirby, Justin Bilello, Michel Fathallah-Shaykh, Hassan M. Wiest, Roland Kirschke, Jan Wiestler, Benedikt Colen, Rivka Kotrotsou, Aikaterini Lamontagne, Pamela Marcus, Daniel Milchenko, Mikhail Nazeri, Arash Weber, Marc-Andr Mahajan, Abhishek Baid, Ujjwal Gerstner, Elizabeth Kwon, Dongjin Acharya, Gagan Agarwal, Manu Alam, Mahbubul Albiol, Alberto Albiol, Antonio Albiol, Francisco J. Alex, Varghese Allinson, Nigel Amorim, Pedro H.A. Amrutkar, Abhijit Anand, Ganesh Andermatt, Simon Arbel, Tal Arbelaez, Pablo Avery, Aaron Azmat, Muneeza Pranjal, B. Bai, Wenjia Banerjee, Subhashis Barth, Bill Batchelder, Thomas Batmanghelich, Kayhan Battistella, Enzo Beers, Andrew Belyaev, Mikhail Bendszus, Martin Benson, Eze Bernal, Jose Bharath, Halandur Nagaraja Biros, George Bisdas, Sotirios Brown, James Cabezas, Mariano Cao, Shilei Cardoso, Jorge M. Carver, Eric N. Casamitjana, Adri Castillo, Laura Silvana Cat, Marcel Cattin, Philippe Cérigues, Albert Chagas, Vinicius S. Chandra, Siddhartha Chang, Yi-Ju Chang, Shiyu Chang, Ken Chazalon, Joseph Chen, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Cheng, Kun Choudhury, Ahana Roy Chylla, Roger Clrigues, Albert Colleman, Steven Colmeiro, Ramiro German Rodriguez Combalia, Marc Costa, Anthony Cui, Xiaomeng Dai, Zhenzhen Dai, Lutao Daza, Laura Alexandra Deutsch, Eric Ding, Changxing Dong, Chao Dong, Shidu Dudzik, Wojciech Eaton-Rosen, Zach Egan, Gary Escudero, Guilherme Estienne, Tho Everson, Richard Fabrizio, Jonathan Fan, Yong Fang, Longwei Feng, Xue Ferrante, Enzo Fidon, Lucas Fischer, Martin French, Andrew P. Fridman, Naomi Fu, Huan Fuentes, David Gao, Yaozong Gates, Evan Gering, David Gholami, Amir Gierke, Willi Glocker, Ben Gong, Mingming Gonzlez-Vill, Sandra Grosges, T. Guan, Yuanfang Guo, Sheng Gupta, Sudeep Han, Woo-Sup Han, Il Song Harmuth, Ko Center for Biomedical Image Computing and Analytics University of Pennsylvania PhiladelphiaPA United States Department of Radiology Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Institute for Surgical Technology and Biomechanics University of Bern Bern Switzerland Center for MR-Research University Children's Hospital Zurich Zurich Switzerland Support Centre for Advanced Neuroimaging Inselspital Institute for Diagnostic and Interventional Neuroradiology Bern University Hospital Bern Switzerland University Hospital of Zurich Zurich Switzerland Center for Clinical Epidemiology and Biostatistics University of Pennsylvania Philadelphia United States Image-Based Biomedical Modeling Group Technical University of Munich Munich Germany Icahn School of Medicine Mount Sinai Health System New YorkNY United States Leidos Biomedical Research Inc. Frederick National Laboratory for Cancer Research FrederickMD21701 United States Cancer Imaging Program National Cancer Institute National Institutes of Health BethesdaMD20814 United States Department of Neurology University of Alabama at Birmingham BirminghamAL United States Department of Diagnostic Radiology University of Texas MD Anderson Cancer Center HoustonTX United States Department of Psychology Washington University St. LouisMO United States Neuroimaging Informatics and Analysis Center Washington University St. LouisMO United States Department of Radiology Washington University St. LouisMO United States Institute of Diagnostic and Interventional Radiology Pediatric Radiology and Neuroradiology University Medical Center Rostock Ernst-Heydemann-Str. 6 Rostock18057 Germany Tata Memorial Centre Homi Bhabha National Institute Mumbai India Shri Guru Gobind Singhji Institute of Engineering and Technology Nanded India NVIDIA Santa Clara
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrot... 详细信息
来源: 评论
Monitoring quality indicators for screening colonoscopies
Monitoring quality indicators for screening colonoscopies
收藏 引用
2015 systems and information engineering Design Symposium, SIEDS 2015
作者: Charles, Malcolm Miano, Thomas N. Zhang, Xinhe Barnes, Laura E. Lobo, Jennifer M. Data Science Institute University of Virginia United States Department of Systems and Information Engineering University of Virginia United States Department of Public Health Sciences University of Virginia United States
The detection rate of adenomas in screening colonoscopies is an important quality indicator for endoscopists. Successful detection of adenomas is linked to reduced cancer incidence and mortality. This study focuses on... 详细信息
来源: 评论