Open Radio Access Networks (O-RANs) represent a novel wireless access network architecture that decomposes traditional RAN functions and makes them openly accessible. O-RANs enable real-time coordination, RAN performa...
详细信息
The increasing data pool in finance sectors forces machine learning(ML)to step into new *** data has significant financial implications and is *** users data from several organizations for various banking services may...
详细信息
The increasing data pool in finance sectors forces machine learning(ML)to step into new *** data has significant financial implications and is *** users data from several organizations for various banking services may result in various intrusions and privacy *** a result,this study employs federated learning(FL)using a flower paradigm to preserve each organization’s privacy while collaborating to build a robust shared global ***,diverse data distributions in the collaborative training process might result in inadequate model learning and a lack of *** address this issue,the present paper proposes the imple-mentation of Federated Averaging(FedAvg)and Federated Proximal(FedProx)methods in the flower framework,which take advantage of the data locality while training and guaranteeing global *** improves the privacy of the local *** analysis used the credit card and Canadian Institute for Cybersecurity Intrusion Detection Evaluation(CICIDS)***,recall,and accuracy as performance indicators to show the efficacy of the proposed strategy using FedAvg and *** experimental findings suggest that the proposed approach helps to safely use banking data from diverse sources to enhance customer banking services by obtaining accuracy of 99.55%and 83.72%for FedAvg and 99.57%,and 84.63%for FedProx.
The recognition of individual activity has proven its importance in many application areas. Even after the pandemic crisis worldwide, the remote monitoring of human actions and their activities has increased a lot. In...
详细信息
Dear Editor,The distributed constraint optimization problems(DCOPs) [1]-[3]provide an efficient model for solving the cooperative problems of multi-agent systems, which has been successfully applied to model the real-...
Dear Editor,The distributed constraint optimization problems(DCOPs) [1]-[3]provide an efficient model for solving the cooperative problems of multi-agent systems, which has been successfully applied to model the real-world problems like the distributed scheduling [4], sensor network management [5], [6], multi-robot coordination [7], and smart grid [8]. However, DCOPs were not well suited to solve the problems with continuous variables and constraint cost in functional form, such as the target tracking sensor orientation [9], the air and ground cooperative surveillance [10], and the sensor network coverage [11].
Software defect prediction plays a critical role in software development and quality assurance processes. Effective defect prediction enables testers to accurately prioritize testing efforts and enhance defect detecti...
详细信息
Software defect prediction plays a critical role in software development and quality assurance processes. Effective defect prediction enables testers to accurately prioritize testing efforts and enhance defect detection efficiency. Additionally, this technology provides developers with a means to quickly identify errors, thereby improving software robustness and overall quality. However, current research in software defect prediction often faces challenges, such as relying on a single data source or failing to adequately account for the characteristics of multiple coexisting data sources. This approach may overlook the differences and potential value of various data sources, affecting the accuracy and generalization performance of prediction results. To address this issue, this study proposes a multivariate heterogeneous hybrid deep learning algorithm for defect prediction (DP-MHHDL). Initially, Abstract Syntax Tree (AST), Code Dependency Network (CDN), and code static quality metrics are extracted from source code files and used as inputs to ensure data diversity. Subsequently, for the three types of heterogeneous data, the study employs a graph convolutional network optimization model based on adjacency and spatial topologies, a Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) hybrid neural network model, and a TabNet model to extract data features. These features are then concatenated and processed through a fully connected neural network for defect prediction. Finally, the proposed framework is evaluated using ten promise defect repository projects, and performance is assessed with three metrics: F1, Area under the curve (AUC), and Matthews correlation coefficient (MCC). The experimental results demonstrate that the proposed algorithm outperforms existing methods, offering a novel solution for software defect prediction.
Micro-expressions (MEs) are fleeting involuntary facial movements, which occur frequently when people attempt to conceal their emotions. Since human eyesight cannot detect fleeting and slight changes in facial express...
详细信息
Cyberbullying,a critical concern for digital safety,necessitates effective linguistic analysis tools that can navigate the complexities of language use in online *** tackle this challenge,our study introduces a new ap...
详细信息
Cyberbullying,a critical concern for digital safety,necessitates effective linguistic analysis tools that can navigate the complexities of language use in online *** tackle this challenge,our study introduces a new approach employing Bidirectional Encoder Representations from the Transformers(BERT)base model(cased),originally pretrained in *** model is uniquely adapted to recognize the intricate nuances of Arabic online communication,a key aspect often overlooked in conventional cyberbullying detection *** model is an end-to-end solution that has been fine-tuned on a diverse dataset of Arabic social media(SM)tweets showing a notable increase in detection accuracy and sensitivity compared to existing *** results on a diverse Arabic dataset collected from the‘X platform’demonstrate a notable increase in detection accuracy and sensitivity compared to existing methods.E-BERT shows a substantial improvement in performance,evidenced by an accuracy of 98.45%,precision of 99.17%,recall of 99.10%,and an F1 score of 99.14%.The proposed E-BERT not only addresses a critical gap in cyberbullying detection in Arabic online forums but also sets a precedent for applying cross-lingual pretrained models in regional language applications,offering a scalable and effective framework for enhancing online safety across Arabic-speaking communities.
Early detection of any disease and starting its treatment in this early stage are the most important steps in case of any life-threatening disease. Stroke is not an exception in this regard which is one of the leading...
详细信息
Extracting valuable information frombiomedical texts is one of the current research hotspots of concern to a wide range of *** biomedical corpus contains numerous complex long sentences and overlapping relational trip...
详细信息
Extracting valuable information frombiomedical texts is one of the current research hotspots of concern to a wide range of *** biomedical corpus contains numerous complex long sentences and overlapping relational triples,making most generalized domain joint modeling methods difficult to apply effectively in this *** a complex semantic environment in biomedical texts,in this paper,we propose a novel perspective to perform joint entity and relation extraction;existing studies divide the relation triples into several steps or ***,the three elements in the relation triples are interdependent and inseparable,so we regard joint extraction as a tripartite classification *** the same time,fromthe perspective of triple classification,we design amulti-granularity 2D convolution to refine the word pair table and better utilize the dependencies between biomedical word ***,we use a biaffine predictor to assist in predicting the labels of word pairs for relation *** model(MCTPL)Multi-granularity Convolutional Tokens Pairs of Labeling better utilizes the elements of triples and improves the ability to extract overlapping triples compared to previous ***,we evaluated our model on two publicly accessible *** experimental results show that our model’s ability to extract relation triples on the CPI dataset improves the F1 score by 2.34%compared to the current optimal *** the DDI dataset,the F1 value improves the F1 value by 1.68%compared to the current optimal *** model achieved state-of-the-art performance compared to other baseline models in biomedical text entity relation extraction.
The amount of information nowadays is rapidly growing. Aside from valuable information, information that is unrelated to a target or is meaningless is also growing. Big data and broader digital technologies are consid...
详细信息
暂无评论