In modern society,an increasing number of occasions need to effectively verify people's *** is the most ef-fective technology for personal *** research on automated biometrics recognition mainly started in the 196...
详细信息
In modern society,an increasing number of occasions need to effectively verify people's *** is the most ef-fective technology for personal *** research on automated biometrics recognition mainly started in the 1960s and *** the following 50 years,the research and application of biometrics have achieved fruitful *** 2014-2015,with the successful applications of some emerging information technologies and tools,such as deep learning,cloud computing,big data,mobile communication,smartphones,location-based services,blockchain,new sensing technology,the Internet of Things and federated learning,biometric technology entered a new development ***,taking 2014-2015 as the time boundary,the development of biometric technology can be divided into two *** addition,according to our knowledge and understanding of biometrics,we fur-ther divide the development of biometric technology into three phases,i.e.,biometrics 1.0,2.0 and *** 1.0 is the primary de-velopment phase,or the traditional development *** 2.0 is an explosive development phase due to the breakthroughs caused by some emerging information *** present,we are in the development phase of biometrics *** 3.0 is the future development phase of *** the biometrics 3.0 phase,biometric technology will be fully mature and can meet the needs of various *** 1.0 is the initial phase of the development of biometric technology,while biometrics 2.0 is the advanced *** this paper,we provide a brief review of biometrics ***,the concept of biometrics 2.0 is defined,and the architecture of biometrics 2.0 is *** particular,the application architecture of biometrics 2.0 in smart cities is *** challenges and perspectives of biometrics 2.0 are also discussed.
Cross-Site Scripting(XSS)remains a significant threat to web application security,exploiting vulnerabilities to hijack user sessions and steal sensitive *** detection methods often fail to keep pace with the evolving ...
详细信息
Cross-Site Scripting(XSS)remains a significant threat to web application security,exploiting vulnerabilities to hijack user sessions and steal sensitive *** detection methods often fail to keep pace with the evolving sophistication of cyber *** paper introduces a novel hybrid ensemble learning framework that leverages a combination of advanced machine learning algorithms—Logistic Regression(LR),Support Vector Machines(SVM),eXtreme Gradient Boosting(XGBoost),Categorical Boosting(CatBoost),and Deep Neural Networks(DNN).Utilizing the XSS-Attacks-2021 dataset,which comprises 460 instances across various real-world trafficrelated scenarios,this framework significantly enhances XSS attack *** approach,which includes rigorous feature engineering and model tuning,not only optimizes accuracy but also effectively minimizes false positives(FP)(0.13%)and false negatives(FN)(0.19%).This comprehensive methodology has been rigorously validated,achieving an unprecedented accuracy of 99.87%.The proposed system is scalable and efficient,capable of adapting to the increasing number of web applications and user demands without a decline in *** demonstrates exceptional real-time capabilities,with the ability to detect XSS attacks dynamically,maintaining high accuracy and low latency even under significant ***,despite the computational complexity introduced by the hybrid ensemble approach,strategic use of parallel processing and algorithm tuning ensures that the system remains scalable and performs robustly in real-time *** for easy integration with existing web security systems,our framework supports adaptable Application Programming Interfaces(APIs)and a modular design,facilitating seamless augmentation of current *** innovation represents a significant advancement in cybersecurity,offering a scalable and effective solution for securing modern web applications against evolving threats.
Text perception is crucial for understanding the semantics of outdoor scenes,making it a key requirement for building intelligent systems for driver assistance or autonomous *** information in car-mounted videos can a...
详细信息
Text perception is crucial for understanding the semantics of outdoor scenes,making it a key requirement for building intelligent systems for driver assistance or autonomous *** information in car-mounted videos can assist drivers in making ***,Car-mounted video text images pose challenges such as complex backgrounds,small fonts,and the need for real-time *** proposed a robust Car-mounted Video Text Detector(CVTD).It is a lightweight text detection model based on ResNet18 for feature extraction,capable of detecting text in arbitrary *** model efficiently extracted global text positions through the Coordinate Attention Threshold Activation(CATA)and enhanced the representation capability through stacking two Feature Pyramid Enhancement Fusion Modules(FPEFM),strengthening feature representation,and integrating text local features and global position information,reinforcing the representation capability of the CVTD *** enhanced feature maps,when acted upon by Text Activation Maps(TAM),effectively distinguished text foreground from non-text ***,we collected and annotated a dataset containing 2200 images of Car-mounted Video Text(CVT)under various road conditions for training and evaluating our model’s *** further tested our model on four other challenging public natural scene text detection benchmark datasets,demonstrating its strong generalization ability and real-time detection *** model holds potential for practical applications in real-world scenarios.
The development of the Internet of Things(IoT)technology is leading to a new era of smart applications such as smart transportation,buildings,and smart ***,these applications act as the building blocks of IoT-enabled ...
详细信息
The development of the Internet of Things(IoT)technology is leading to a new era of smart applications such as smart transportation,buildings,and smart ***,these applications act as the building blocks of IoT-enabled smart *** high volume and high velocity of data generated by various smart city applications are sent to flexible and efficient cloud computing resources for ***,there is a high computation latency due to the presence of a remote cloud *** computing,which brings the computation close to the data source is introduced to overcome this *** an IoT-enabled smart city environment,one of the main concerns is to consume the least amount of energy while executing tasks that satisfy the delay *** efficient resource allocation at the edge is helpful to address this *** this paper,an energy and delay minimization problem in a smart city environment is formulated as a bi-objective edge resource allocation ***,we presented a three-layer network architecture for IoT-enabled smart ***,we designed a learning automata-based edge resource allocation approach considering the three-layer network architecture to solve the said bi-objective minimization *** Automata(LA)is a reinforcement-based adaptive decision-maker that helps to find the best task and edge resource *** extensive set of simulations is performed to demonstrate the applicability and effectiveness of the LA-based approach in the IoT-enabled smart city environment.
Pervasive Computing has become more personal with the widespread adoption of the Internet of Things(IoT)in our day-to-day *** emerging domain that encompasses devices,sensors,storage,and computing of personal use and ...
详细信息
Pervasive Computing has become more personal with the widespread adoption of the Internet of Things(IoT)in our day-to-day *** emerging domain that encompasses devices,sensors,storage,and computing of personal use and surroundings leads to Personal IoT(PIoT).PIoT offers users high levels of personalization,automation,and *** proliferation of PIoT technology has extended into society,social engagement,and the interconnectivity of PIoT objects,resulting in the emergence of the Social Internet of Things(SIoT).The combination of PIoT and SIoT has spurred the need for autonomous learning,comprehension,and understanding of both the physical and social *** research on PIoT is dedicated to enabling seamless communication among devices,striking a balance between observation,sensing,and perceiving the extended physical and social environment,and facilitating information ***,the virtualization of independent learning from the social environment has given rise to Artificial Social Intelligence(ASI)in PIoT ***,autonomous data communication between different nodes within a social setup presents various resource management challenges that require careful *** paper provides a comprehensive review of the evolving domains of PIoT,SIoT,and ***,the paper offers insightful modeling and a case study exploring the role of PIoT in post-COVID *** study contributes to a deeper understanding of the intricacies of PIoT and its various dimensions,paving the way for further advancements in this transformative field.
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,in...
详细信息
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,including scattering noise,low contrast,and limited resolution in ultrasound *** existing segmentation models have made progress,they still suffer from several limitations,such as high error rates,low generalizability,overfitting,limited feature learning capability,*** address these challenges,this paper proposes a Multi-level Relation Transformer-based U-Net(MLRT-UNet)to improve thyroid nodule *** MLRTUNet leverages a novel Relation Transformer,which processes images at multiple scales,overcoming the limitations of traditional encoding *** transformer integrates both local and global features effectively through selfattention and cross-attention units,capturing intricate relationships within the *** approach also introduces a Co-operative Transformer Fusion(CTF)module to combine multi-scale features from different encoding layers,enhancing the model’s ability to capture complex patterns in the ***,the Relation Transformer block enhances long-distance dependencies during the decoding process,improving segmentation *** results showthat the MLRT-UNet achieves high segmentation accuracy,reaching 98.2% on the Digital Database Thyroid Image(DDT)dataset,97.8% on the Thyroid Nodule 3493(TG3K)dataset,and 98.2% on the Thyroid Nodule3K(TN3K)*** findings demonstrate that the proposed method significantly enhances the accuracy of thyroid nodule segmentation,addressing the limitations of existing models.
Video forgery detection has been necessary with recent spurt in fake videos like Deepfakes and doctored videos from multiple video capturing devices. In this paper, we provide a novel technique of detecting fake video...
详细信息
Network attacks, such as botnets stealing sensitive data, constitute a critical concern for administrators in the Internet area. Such attacks can be prevented using a network access control (NAC) scheme. However, exis...
详细信息
In recent times, drastic climate changes have caused a substantial increase in the growth of crop diseases. This causes large-scale demolition of crops, decreases cultivation, and eventually leads to the financial los...
详细信息
Delay Tolerant Networks (DTNs) have the ability to make communication possible without end-to-end connectivity using store-carry-forward technique. Efficient data dissemination in DTNs is very challenging problem due ...
详细信息
暂无评论