This book provides an introduction to the field of periodic pattern mining, reviews state-of-the-art techniques, discusses recent advances, and reviews open-source software. Periodic pattern mining is a popular and em...
详细信息
ISBN:
(数字)9789811639647
ISBN:
(纸本)9789811639630;9789811639661
This book provides an introduction to the field of periodic pattern mining, reviews state-of-the-art techniques, discusses recent advances, and reviews open-source software. Periodic pattern mining is a popular and emerging research area in the field of data mining. It involves discovering all regularly occurring patterns in temporal databases. One of the major applications of periodic pattern mining is the analysis of customer transaction databases to discover sets of items that have been regularly purchased by customers. Discovering such patterns has several implications for understanding the behavior of customers. Since the first work on periodic pattern mining, numerous studies have been published and great advances have been made in this field. The book consists of three main parts: introduction, algorithms, and applications.
This book constitutes the thoroughly refereed post-conference proceedings of the International Workshop on Service-Oriented Computing: Agents, Semantics and engineering, SOCASE 2009, held in Budapest, Hungary, as an a...
详细信息
ISBN:
(数字)9783642107399
ISBN:
(纸本)9783642107382
This book constitutes the thoroughly refereed post-conference proceedings of the International Workshop on Service-Oriented Computing: Agents, Semantics and engineering, SOCASE 2009, held in Budapest, Hungary, as an associated event of AAMAS 2009, the main international conference on autonomous agents and multi-agent systems. The 10 revised full papers presented were carefully reviewed and selected for inclusion in the book. The papers address a range of topics at the intersection of service-oriented computing, semantic technology, and intelligent multiagent systems, such as: service description and discovery; planning, composition and negotiation; semantic processes and service agents; as well as applications.
作者:
Xin ZhangHongzhi FengM. Shamim HossainYinzhuo ChenHongbo WangYuyu YinHangzhou Dianzi University
China Key Laboratory of Complex Systems Modeling and Simulation Ministry of Education China Zhoushan Tongbo Marine Electronic Information Research Institute Hangzhou Dianzi University China and Yunnan Key Laboratory of Service Computing Yunnan University of Finance and Economics China Hangzhou Dianzi University
China Department of Software Engineering
College of Computer and Information Sciences King Saud University Saudi Arabia Hangzhou Dianzi University
China Key Laboratory of Complex Systems Modeling and Simulation Ministry of Education China and Zhoushan Tongbo Marine Electronic Information Research Institute Hangzhou Dianzi University China
Action Quality Assessment (AQA) has become crucial in video analysis, finding wide applications in various domains, such as healthcare and sports. A significant challenge faced by AQA is the background bias due to the...
详细信息
Action Quality Assessment (AQA) has become crucial in video analysis, finding wide applications in various domains, such as healthcare and sports. A significant challenge faced by AQA is the background bias due to the dominance of the background in videos. Especially, the background bias tends to overshadow subtle foreground differences, which is crucial for precise action evaluation. To address the background bias issue, we propose a novel data augmentation method named Scaled Background Swap. Firstly, the background regions between different video samples are swapped to guide models focus toward the dynamic foreground regions and mitigate its sensitivity to the background during training. Secondly, the video’s foreground region is up-scaled to further enhance models’ attention to the critical foreground action information for AQA tasks. In particular, the proposed Scaled Background Swap method can effectively improve models’ accuracy and generalization by prioritizing foreground motion and swapping backgrounds. It can be flexibly applied with various video analysis models. Extensive experiments on AQA benchmarks demonstrate that Scaled Background Swap method achieves better performance than baselines. Specifically, the Spearman’s rank correlation on datasets AQA-7 and MTL-AQA reaches 0.8870 and 0.9526, respectively. The code is available at: https://***/Emy-cv/Scaled-Background Swap.
The study of sentiment in Natural Language Processing (NLP) is among the most successful research areas because of the availability of millions of user opinions online since the turn of the century. The economic, poli...
详细信息
The study of sentiment in Natural Language Processing (NLP) is among the most successful research areas because of the availability of millions of user opinions online since the turn of the century. The economic, political, and medical fields are just some of the many that have benefited from studies of sentiment research. While numerous studies have examined more mainstream topics like consumer electronics, movies, and restaurants, relatively few have examined health and medical concerns. Considerable insight into where to direct efforts to improve public health might be gained by a study of how people feel about healthcare as a whole and of individual drug experiences in particular. When it comes to medicine, automatic analysis of online user evaluations paves the way for sifting through massive amounts of user feedback to find information regarding medications' efficacy and side effects that might be used to enhance pharmacovigilance programs. Simple rules-based methods have given way to more complex machine learning approaches like deep learning, which is developing as a technology for many natural language processing jobs. The opensource datasets have been analyzed with models that use word embeddings and term frequency-inverse document frequency (TF-IDF). A feature-enhanced text-inception model for sentiment classification was presented to work in tandem with this approach. The model first employed a cutting-edge text-inception module to glean useful shallow features from the text. K-MaxPooling was subsequently employed to reduce the dimensionality of its shallow and deep includes as well as enhance the generalization of characteristics, and a deep feature extraction module was formed using the bidirectional gated recurrent unit (Bi-GRU) and the capsule neural network to comprehend the text's semantic data. By combining traditional methods with cutting-edge artificial intelligence techniques, this hybrid approach can revolutionize public health initiatives, de
暂无评论