咨询与建议

限定检索结果

文献类型

  • 267 篇 期刊文献
  • 244 篇 会议

馆藏范围

  • 511 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 295 篇 工学
    • 211 篇 计算机科学与技术...
    • 177 篇 软件工程
    • 54 篇 生物工程
    • 48 篇 控制科学与工程
    • 47 篇 信息与通信工程
    • 45 篇 生物医学工程(可授...
    • 32 篇 光学工程
    • 25 篇 电气工程
    • 25 篇 化学工程与技术
    • 22 篇 机械工程
    • 19 篇 安全科学与工程
    • 18 篇 电子科学与技术(可...
    • 17 篇 交通运输工程
    • 11 篇 仪器科学与技术
    • 11 篇 网络空间安全
  • 190 篇 理学
    • 78 篇 数学
    • 69 篇 生物学
    • 43 篇 物理学
    • 32 篇 统计学(可授理学、...
    • 25 篇 化学
    • 20 篇 系统科学
    • 12 篇 大气科学
  • 93 篇 管理学
    • 58 篇 管理科学与工程(可...
    • 41 篇 图书情报与档案管...
    • 26 篇 工商管理
  • 54 篇 医学
    • 46 篇 临床医学
    • 35 篇 基础医学(可授医学...
    • 23 篇 公共卫生与预防医...
    • 14 篇 药学(可授医学、理...
  • 17 篇 农学
    • 11 篇 作物学
  • 10 篇 经济学
  • 10 篇 法学
  • 9 篇 教育学
  • 1 篇 军事学

主题

  • 31 篇 deep learning
  • 30 篇 accuracy
  • 22 篇 real-time system...
  • 22 篇 machine learning
  • 20 篇 reviews
  • 19 篇 convolutional ne...
  • 17 篇 training
  • 15 篇 decision making
  • 14 篇 support vector m...
  • 14 篇 feature extracti...
  • 13 篇 medical services
  • 12 篇 data mining
  • 12 篇 machine learning...
  • 11 篇 predictive model...
  • 11 篇 artificial intel...
  • 10 篇 reliability
  • 10 篇 neural networks
  • 10 篇 semantics
  • 10 篇 data models
  • 9 篇 image segmentati...

机构

  • 13 篇 department of ar...
  • 11 篇 department of ar...
  • 8 篇 data science and...
  • 7 篇 datta meghe inst...
  • 7 篇 datta meghe inst...
  • 7 篇 center for data ...
  • 7 篇 department of ar...
  • 7 篇 munich center fo...
  • 7 篇 bifold - berlin ...
  • 7 篇 school of comput...
  • 6 篇 department of ar...
  • 6 篇 faculty of engin...
  • 6 篇 school of comput...
  • 6 篇 guangdong provin...
  • 6 篇 pazhou laborator...
  • 6 篇 data science and...
  • 5 篇 department of co...
  • 5 篇 department of ph...
  • 5 篇 department of ar...
  • 5 篇 national key lab...

作者

  • 19 篇 prateek verma
  • 18 篇 verma prateek
  • 12 篇 aditya barhate
  • 11 篇 foster ian
  • 10 篇 abhay tale
  • 9 篇 barhate aditya
  • 9 篇 tale abhay
  • 8 篇 müller klaus-rob...
  • 7 篇 srinivasulu redd...
  • 6 篇 samek wojciech
  • 5 篇 blaiszik ben
  • 5 篇 huerta e.a.
  • 5 篇 chard kyle
  • 5 篇 lapuschkin sebas...
  • 5 篇 kyle chard
  • 5 篇 jikar nayan
  • 5 篇 ian foster
  • 5 篇 wang liwei
  • 4 篇 utkarsha pachara...
  • 4 篇 borsci simone

语言

  • 333 篇 英文
  • 176 篇 其他
  • 3 篇 中文
检索条件"机构=Department of Learning Data and Technology"
511 条 记 录,以下是291-300 订阅
排序:
Secure Device on boarding in IoT Networks
Secure Device on boarding in IoT Networks
收藏 引用
International Conference on Science technology Engineering and Management (ICONSTEM)
作者: P. Sathyaraj Shankar Nayak Bhukya S. Rukmani Devi Chetan Umadi A. Ajina Rajendiran M Department of Electronics and Communication Engineering RMK College of Engineering and Technology Puduvoyal Tamil Nadu India Department of Computer Science Engineering (Data Science) CMR Technical Campus Hyderabad Telangana India Department of Computer Science Saveetha College of Liberal Arts and Sciences SIMATS Deemed to be University Chennai Tamil Nadu India Department of Electronics& Telecommunication Engineering Dayananda Sagar College of Engineering Bengaluru Karnataka India Department of Artificial Intelligence and Machine Learning M S Ramaiah Institute of Technology Bangalore India Department of Computer Science and Engineering Panimalar Engineering College Chennai Tamil Nadu India
The fast spread of Internet of Things (IoT) gadgets has led to unprecedented number of interconnected systems offering many applications and services. Diverse elements in IoT networks increase security vulnerabilities... 详细信息
来源: 评论
Traffic4cast at NeurIPS 2022 – Predict Dynamics along Graph Edges from Sparse Node data: Whole City Traffic and ETA from Stationary Vehicle Detectors  36
Traffic4cast at NeurIPS 2022 – Predict Dynamics along Graph...
收藏 引用
36th Annual Conference on Neural Information Processing Systems - Competition Track, NeurIPS 2022
作者: Neun, Moritz Eichenberger, Christian Martin, Henry Spanring, Markus Siripurapu, Rahul Springer, Daniel Deng, Leyan Wu, Chenwang Lian, Defu Zhou, Min Lumiste, Martin Ilie, Andrei Wu, Xinhua Lyu, Cheng Lu, Qing-Long Mahajan, Vishal Lu, Yichao Li, Jiezhang Li, Junjun Gong, Yue-Jiao Grötschla, Florian Mathys, Joël Wei, Ye Haitao, He Fang, Hui Malm, Kevin Tang, Fei Kopp, Michael Kreil, David Hochreiter, Sepp Vienna Austria Institute of Cartography and Geoinformation ETH Zurich Switzerland School of Data Science University of Science and Technology of China China Huawei Noah’s Ark Lab. China Bolt Technology Tallinn Estonia University of Bucharest Bucharest Romania Department of Civil and Environmental Engineering Northeastern University BostonMA United States Technical University of Munich Germany Layer 6 AI Toronto Canada School of Coumpute Science and Engineering South China University of Technology Guangzhou China ETH Zurich Switzerland Department of Computer Science Loughborough University Loughborough United Kingdom School of Architecture Building and Civil Engineering Loughborough University Loughborough United Kingdom HERE Technologies ChicagoIL United States Kaiko Zurich Switzerland Machine Learning Institute Johannes Kepler University Linz Austria
The global trends of urbanization and increased personal mobility force us to rethink the way we live and use urban space. The Traffic4cast competition series tackles this problem in a data-driven way, advancing the l... 详细信息
来源: 评论
Topologically Faithful Multi-class Segmentation in Medical Images
arXiv
收藏 引用
arXiv 2024年
作者: Berger, Alexander H. Lux, Laurin Stucki, Nico Bürgin, Vincent Shit, Suprosanna Banaszak, Anna Rueckert, Daniel Bauer, Ulrich Paetzold, Johannes C. School of Computation Information and Technology Technical University of Munich Munich Germany Munich Data Science Institute Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany School of Medicine and Health Klinikum rechts der Isar Technical University of Munich Munich Germany Department of Computing Imperial College London London United Kingdom Department of Quantitative Biomedicine University of Zurich Switzerland
Topological accuracy in medical image segmentation is a highly important property for downstream applications such as network analysis and flow modeling in vessels or cell counting. Recently, significant methodologica... 详细信息
来源: 评论
Beyond Explaining: Opportunities and Challenges of XAI-Based Model Improvement
arXiv
收藏 引用
arXiv 2022年
作者: Weber, Leander Lapuschkin, Sebastian Binder, Alexander Samek, Wojciech Department of Artificial Intelligence Fraunhofer Heinrich Hertz Institute Berlin10587 Germany ICT Cluster Singapore Institute of Technology 138683 Singapore BIFOLD - Berlin Institute for the Foundations of Learning and Data Berlin Germany Department of Informatics University of Oslo Oslo0373 Norway
Explainable Artificial Intelligence (XAI) is an emerging research field bringing transparency to highly complex and opaque machine learning (ML) models. Despite the development of a multitude of methods to explain the... 详细信息
来源: 评论
Analyzing the Effects of Different Urban and Rural Characteristics on Surface Urban Heat Island Intensity Using the Spatial Autoregressive Model
SSRN
收藏 引用
SSRN 2023年
作者: Wongsi, Noppachai Wongsai, Sangdao Wanishsakpong, Wandee Suwanprasit, Chanida Department of Mathematics and Statistics Faculty of Science and Technology Thammasat University Pathumthani12121 Thailand Thammasat University Research Unit in Data Learning Thammasat University Pathumthani12121 Thailand Department of Statistics Faculty of Science Kasetsart University Bangkok10900 Thailand Department of Geography Faculty of Social Sciences Chiang Mai University Chiang Mai50200 Thailand College of Arts Media and Technology Chiang Mai University Chiang Mai50200 Thailand
This study introduces an approach for quantifying the SUHII using the generalized mixed spatial autoregressive (SAR) model, in the Eastern Economic Corridor of Thailand. A comparative analysis was performed using the ... 详细信息
来源: 评论
OPTIMIZING EXPLANATIONS BY NETWORK CANONIZATION AND HYPERPARAMETER SEARCH
arXiv
收藏 引用
arXiv 2022年
作者: Pahde, Frederik Yolcu, Galip Ümit Binder, Alexander Samek, Wojciech Lapuschkin, Sebastian Department of Artificial Intelligence Fraunhofer Heinrich-Hertz-Institute Germany Technische Universität Berlin Germany ICT Cluster Singapore Institute of Technology Singapore University of Oslo Norway BIFOLD – Berlin Institute for the Foundations of Learning and Data Germany
Explainable AI (XAI) is slowly becoming a key component for many AI applications. Rule-based and modified backpropagation XAI approaches however often face challenges when being applied to modern model architectures i... 详细信息
来源: 评论
Legal perspective on possible fairness measures - A legal discussion using the example of hiring decisions
arXiv
收藏 引用
arXiv 2021年
作者: Hauer, Marc P. Kevekordes, Johannes Haeri, Maryam Amir TU Kaiserslautern Germany WWU Münster Germany TU Kaiserslautern Germany Learning Data-Analytics and Technology Department University of Twente Netherlands
With the increasing use of AI in algorithmic decision making (e.g. based on neural networks), the question arises how bias can be excluded or mitigated. There are some promising approaches, but many of them are based ... 详细信息
来源: 评论
Atlas: A Novel Pathology Foundation Model by Mayo Clinic, Charité, and Aignostics
arXiv
收藏 引用
arXiv 2025年
作者: Alber, Maximilian Tietz, Stephan Dippel, Jonas Milbich, Timo Lesort, Timothée Korfiatis, Panos Krügener, Moritz Cancer, Beatriz Perez Shah, Neelay Möllers, Alexander Seegerer, Philipp Carpen-Amarie, Alexandra Standvoss, Kai Dernbach, Gabriel de Jong, Edwin Schallenberg, Simon Kunft, Andreas von Ankershoffen, Helmut Hoffer Schaeferle, Gavin Duffy, Patrick Redlon, Matt Jurmeister, Philipp Horst, David Ruff, Lukas Müller, Klaus-Robert Klauschen, Frederick Norgan, Andrew Aignostics Germany Department of Laboratory Medicine and Pathology Mayo Clinic RochesterMN United States Department of Radiology Mayo Clinic RochesterMN United States Department of Information Technology Mayo Clinic RochesterMN United States Systems Quality Office Mayo Clinic RochesterMN United States Machine Learning Group Technische Universität Berlin Germany BIFOLD Berlin Institute for the Foundations of Learning and Data Germany Department of Artificial Intelligence Korea University Korea Republic of Max-Planck Institute for Informatics Germany Berlin & Munich Partner Sites Germany Institute of Pathology Ludwig-Maximilians-Universität München Germany Institute of Pathology Charité – Universitätsmedizin Berlin Germany Germany
Recent advances in digital pathology have demonstrated the effectiveness of foundation models across diverse applications. In this report, we present Atlas, a novel vision foundation model based on the RudolfV approac...
来源: 评论
Deep learning for Uneven data in Industrial IoT Using a Distributed Bias-Aware Adversarial Network
Deep Learning for Uneven Data in Industrial IoT Using a Dist...
收藏 引用
International Conference on Inventive Research in Computing Applications (ICIRCA)
作者: Raj Kumar Gupta Naveena N B. Srinivasa Rao Rajasree RS Swagata Sarkar Kallakunta Ravi Kumar Physics Department Sardar Vallabhbhai Patel College Veer Kunwar Singh University Bhabua Ara Bihar Computer Technology-UG Kongu Engineering College Perundurai Department of Computer Science and Engineering Gokaraju Rangaraju Institute of Engineering & Technology Hyderabad Artificial Intelligence and Machine Learning New Horizon College of Engineering Bangalore Department of Artificial intelligence and Data Science Sri Sairam Engineering College Sai Leo Nagar Chennai 44 Department of ECE Koneru Lakshmaiah Education Foundation Vaddeswaram AP
In minority class and noisy data situations, supervised learning performs more favorably for the majority class but cannot generalize testing data. Performance in the aforementioned use cases might be improved with th...
来源: 评论
From Pixels to Histopathology: A Graph-Based Framework for Interpretable Whole Slide Image Analysis
arXiv
收藏 引用
arXiv 2025年
作者: Weers, Alexander Berger, Alexander H. Lux, Laurin Schüffler, Peter Rueckert, Daniel Paetzold, Johannes C. School of Computation Information and Technology Technical University of Munich Germany Department of Computing Imperial College London United Kingdom Munich Center of Machine Learning Germany Munich Data Science Institute Technical University of Munich Munich Germany Institute of Pathology TUM School of Medicine and Health Technical University of Munich Munich Germany Weill Cornell Medicine Cornell University New York CityNY United States
The histopathological classification of whole-slide images (WSIs) is a fundamental task in digital pathology;yet it requires extensive time and expertise from specialists. While deep learning methods show promising re... 详细信息
来源: 评论