咨询与建议

限定检索结果

文献类型

  • 264 篇 期刊文献
  • 240 篇 会议

馆藏范围

  • 504 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 292 篇 工学
    • 208 篇 计算机科学与技术...
    • 175 篇 软件工程
    • 56 篇 生物工程
    • 46 篇 信息与通信工程
    • 46 篇 控制科学与工程
    • 45 篇 生物医学工程(可授...
    • 33 篇 光学工程
    • 25 篇 化学工程与技术
    • 24 篇 电气工程
    • 22 篇 机械工程
    • 19 篇 安全科学与工程
    • 18 篇 电子科学与技术(可...
    • 17 篇 交通运输工程
    • 11 篇 网络空间安全
  • 189 篇 理学
    • 78 篇 数学
    • 71 篇 生物学
    • 44 篇 物理学
    • 32 篇 统计学(可授理学、...
    • 25 篇 化学
    • 20 篇 系统科学
    • 11 篇 大气科学
  • 93 篇 管理学
    • 58 篇 管理科学与工程(可...
    • 41 篇 图书情报与档案管...
    • 26 篇 工商管理
  • 52 篇 医学
    • 44 篇 临床医学
    • 34 篇 基础医学(可授医学...
    • 23 篇 公共卫生与预防医...
    • 14 篇 药学(可授医学、理...
  • 18 篇 农学
    • 12 篇 作物学
  • 10 篇 经济学
    • 10 篇 应用经济学
  • 10 篇 法学
  • 9 篇 教育学
  • 1 篇 军事学

主题

  • 30 篇 deep learning
  • 30 篇 accuracy
  • 21 篇 real-time system...
  • 21 篇 machine learning
  • 20 篇 reviews
  • 19 篇 convolutional ne...
  • 17 篇 training
  • 15 篇 decision making
  • 14 篇 support vector m...
  • 14 篇 feature extracti...
  • 13 篇 medical services
  • 12 篇 data mining
  • 12 篇 machine learning...
  • 11 篇 predictive model...
  • 11 篇 artificial intel...
  • 10 篇 reliability
  • 10 篇 neural networks
  • 10 篇 semantics
  • 10 篇 data models
  • 9 篇 image segmentati...

机构

  • 13 篇 department of ar...
  • 11 篇 department of ar...
  • 8 篇 data science and...
  • 7 篇 datta meghe inst...
  • 7 篇 datta meghe inst...
  • 7 篇 center for data ...
  • 7 篇 department of ar...
  • 7 篇 munich center fo...
  • 7 篇 bifold - berlin ...
  • 7 篇 school of comput...
  • 6 篇 department of ar...
  • 6 篇 faculty of engin...
  • 6 篇 school of comput...
  • 6 篇 guangdong provin...
  • 6 篇 pazhou laborator...
  • 6 篇 data science and...
  • 5 篇 department of co...
  • 5 篇 department of ph...
  • 5 篇 department of ar...
  • 5 篇 national key lab...

作者

  • 19 篇 prateek verma
  • 18 篇 verma prateek
  • 12 篇 aditya barhate
  • 11 篇 foster ian
  • 10 篇 abhay tale
  • 9 篇 barhate aditya
  • 9 篇 tale abhay
  • 8 篇 müller klaus-rob...
  • 7 篇 srinivasulu redd...
  • 6 篇 samek wojciech
  • 5 篇 blaiszik ben
  • 5 篇 huerta e.a.
  • 5 篇 chard kyle
  • 5 篇 lapuschkin sebas...
  • 5 篇 jikar nayan
  • 5 篇 wang liwei
  • 4 篇 utkarsha pachara...
  • 4 篇 borsci simone
  • 4 篇 chard ryan
  • 4 篇 haeri maryam ami...

语言

  • 380 篇 英文
  • 122 篇 其他
  • 3 篇 中文
检索条件"机构=Department of Learning Data and Technology"
504 条 记 录,以下是341-350 订阅
排序:
Automatic Identification of Chemical Moieties
arXiv
收藏 引用
arXiv 2022年
作者: Lederer, Jonas Gastegger, Michael Schütt, Kristof T. Kampffmeyer, Michael Müller, Klaus-Robert Unke, Oliver T. Berlin10587 Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Germany Department of Physics and Technology UiT The Arctic University of Norway Tromsø9019 Norway Google Research Brain Team Berlin United States Department of Artificial Intelligence Korea University Seoul136-713 Korea Republic of Max Planck Institut für Informatik Saarbrücken66123 Germany
In recent years, the prediction of quantum mechanical observables with machine learning methods has become increasingly popular. Message-passing neural networks (MPNNs) solve this task by constructing atomic represent... 详细信息
来源: 评论
Towards Expressive Spectral-Temporal Graph Neural Networks for Time Series Forecasting
arXiv
收藏 引用
arXiv 2023年
作者: Jin, Ming Shi, Guangsi Li, Yuan-Fang Xiong, Bo Zhou, Tian Salim, Flora D. Zhao, Liang Wu, Lingfei Wen, Qingsong Pan, Shirui School of Information and Communication Technology Griffith University Gold Coast Australia Department of Data Science and AI Monash University Melbourne Australia International Max Plank Research School for Intelligent Systems The University of Stuttgart Stuttgart Germany Alibaba Group Hangzhou China School of Computer Science and Engineering University of New South Wales Sydney Australia Department of Computer Science Emory University Atlanta United States Anytime.AI New York United States Squirrel Ai Learning Bellevue United States
Time series forecasting has remained a focal point due to its vital applications in sectors such as energy management and transportation planning. Spectral-temporal graph neural network is a promising abstraction unde... 详细信息
来源: 评论
Your transformer may not be as powerful as you expect  22
Your transformer may not be as powerful as you expect
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Shengjie Luo Shanda Li Shuxin Zheng Tie-Yan Liu Liwei Wang Di He National Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University and Zhejiang Lab Machine Learning Department School of Computer Science Carnegie Mellon University Microsoft Research National Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University and Center for Data Science Peking University National Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University
Relative Positional Encoding (RPE), which encodes the relative distance between any pair of tokens, is one of the most successful modifications to the original Transformer. As far as we know, theoretical understanding...
来源: 评论
A Generic and Robust System for Automated Detection of Different Classes of Arrhythmia
收藏 引用
Procedia Computer Science 2020年 167卷 1801-1810页
作者: Vandana Singh U. Srinivasulu Reddy G. Manju Bhargavia M.Tech (Data Analytics) National Institute of Technology Tiruchirappalli 620015 India Assistant Professor Machine Learning and Data Analytics Lab Department of Computer Applications National Institute of Technology Tiruchirappalli 620015 India Post-Doc Department of Physics National Institute of Technology Tiruchirappalli 620015 India
Cardiovascular Arrhythmias (irregular beat) are related to the sudden death, can be characterized into two kinds, life-threatening (dangerous) and non-life-threatening. In clinical research and diagnosis analysis elec... 详细信息
来源: 评论
Risk-based decision making: estimands for sequential prediction under interventions
arXiv
收藏 引用
arXiv 2023年
作者: Luijken, Kim Morzywolek, Pawel van Amsterdam, Wouter Cinà, Giovanni Hoogland, Jeroen Keogh, Ruth Krijthe, Jesse Magliacane, Sara van Ommen, Thijs Peek, Niels Putter, Hein van Smeden, Maarten Sperrin, Matthew Wang, Junfeng Weir, Daniala Didelez, Vanessa van Geloven, Nan Department of Epidemiology Julius Center for Health Sciences and Primary Care University Medical Center Utrecht Utrecht Netherlands Department of Applied Mathematics Computer Science and Statistics Ghent University Ghent Belgium Department of Statistics University of Washington Seattle United States Department of Medical Informatics Amsterdam University Medical Centers Amsterdam Netherlands Institute for Logic Language and Computation University of Amsterdam Amsterdam Netherlands Pacmed Amsterdam Netherlands Department of Epidemiology and Data Science Amsterdam University Medical Centers Amsterdam Netherlands Department of Medical Statistics London School of Hygiene & Tropical Medicine Keppel Street London United Kingdom Pattern Recognition and Bio-Informatics Group EEMCS Delft University of Technology Delft Netherlands Amsterdam Machine Learning Lab University of Amsterdam Amsterdam Netherlands Department of Information and Computing Sciences Utrecht University Utrecht Netherlands Division of Informatics Imaging and Data Science Faculty of Biology Medicine and Health University of Manchester Manchester Academic Health Science Centre Manchester United Kingdom Department of Biomedical Data Sciences Leiden University Medical Center Leiden Netherlands Division of Pharmacoepidemiology and Clinical Pharmacology Department of Pharmaceutical Sciences Utrecht University Utrecht Netherlands Department of Biometry and Data Management Leibniz Institute for Prevention Research Epidemiology - BIPS Bremen Germany Faculty of Mathematics/Computer Science University of Bremen Bremen Germany
Prediction models are used amongst others to inform medical decisions on interventions. Typically, individuals with high risks of adverse outcomes are advised to undergo an intervention while those at low risk are adv... 详细信息
来源: 评论
Unintended consequences: Factors influencing oil palm plantation expansion  3
Unintended consequences: Factors influencing oil palm planta...
收藏 引用
3rd Life and Environmental Sciences Academics Forum, LEAF 2019
作者: Wongsai, S. Keson, J. Wongsai, N. Thammasat University Research Unit in Data Learning Division of Mathematics and Statistics Faculty of Science and Technology Thammasat University Pathumthani12120 Thailand Faculty of Technology and Environment Prince of Songkla University Phuket Campus Phuket83120 Thailand Department of Mathematics and Computer Science Faculty of Science and Technology Prince of Songkla University Pattani Campus Pattani94000 Thailand
We investigated the landscape variables affecting the current dramatic expansion of oil palm plantations in Lam Thap district Krabi Province Thailand. THEOS satellite data was used to map land use classifications usin... 详细信息
来源: 评论
Optimal sampling density for nonparametric regression
arXiv
收藏 引用
arXiv 2021年
作者: Panknin, Danny Müller, Klaus-Robert Nakajima, Shinichi Machine Learning Department Berlin Institute of Technology Berlin10587 Germany BIFOLD-Berlin Institute for the Foundations of Learning and Data Germany Department of Artificial Intelligence Korea University Seoul136-713 Korea Republic of Max Planck Institute for Informatics Saarbrücken66123 Germany RIKEN AIP 1-4-1 Nihonbashi Chuo-ku Tokyo Japan
We propose a novel active learning strategy for regression, which is model-agnostic, robust against model mismatch, and interpretable. Assuming that a small number of initial samples are available, we derive the optim... 详细信息
来源: 评论
Parameter estimation for cellular automata
arXiv
收藏 引用
arXiv 2023年
作者: Kazarnikov, Alexey Ray, Nadja Haario, Heikki Lappalainen, Joona Rupp, Andreas Heidelberg University Mathematikon Im Neuenheimer Feld 205 Heidelberg69120 Germany Mathematical Institute for Machine Learning and Data Science Catholic University of Eichstätt-Ingolstadt Hohe-Schul-Str. 5 Ingolstadt85049 Germany School of Engineering Science Lappeenranta–Lahti University of Technology P.O. Box 20 Lappeenranta53851 Finland Department of Mathematics Faculty of Mathematics and Computer Science Saarland University SaarbrückenDE-66123 Germany
Self-organizing complex systems can be modeled using cellular automaton models. However, the parametrization of these models is crucial and significantly determines the resulting structural pattern. In this research, ... 详细信息
来源: 评论
SDCOR: Scalable density-based clustering for local outlier detection in massive-scale datasets
arXiv
收藏 引用
arXiv 2020年
作者: Naghavi Nozad, Sayyed Ahmad Haeri, Maryam Amir Folino, Gianluigi Department of Computer Engineering Amirkabir University of Technology Tehran Iran Learning Data-Analytics Technology Department University of Twente Enschede Netherlands ICAR-CNR Rende Italy
This paper presents a batch-wise density-based clustering approach for local outlier detection in massive-scale datasets. Unlike the well-known traditional algorithms, which assume that all the data is memory-resident... 详细信息
来源: 评论
Connectome Computation System:2015–2021 updates
收藏 引用
Science Bulletin 2022年 第5期67卷 448-451页
作者: Xiu-Xia Xing Ting Xu Chao Jiang Yin-Shan Wang Xi-Nian Zuo Department of Applied Mathematics College of MathematicsFaculty of ScienceBeijing University of TechnologyBeijing 100124China Center for the Developing Brain Child Mind InstituteNY 10022USA School of Psychology Capital Normal UniversityBeijing 100048China State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal UniversityBeijing 100875China National Basic Science Data Center Beijing 100190China Developmental Population Neuroscience Research Center IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijing 100875China
The Connectome Computation System(CCS)was previously reported in the Science Bulletin[1].Here,we describe a summary of the 6-year CCS updates(2015–2021),which are accessible at https://***/zuoxinian/*** updates conta... 详细信息
来源: 评论