咨询与建议

限定检索结果

文献类型

  • 264 篇 期刊文献
  • 240 篇 会议

馆藏范围

  • 504 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 293 篇 工学
    • 208 篇 计算机科学与技术...
    • 175 篇 软件工程
    • 56 篇 生物工程
    • 46 篇 信息与通信工程
    • 46 篇 控制科学与工程
    • 45 篇 生物医学工程(可授...
    • 33 篇 光学工程
    • 25 篇 电气工程
    • 25 篇 化学工程与技术
    • 22 篇 机械工程
    • 19 篇 电子科学与技术(可...
    • 19 篇 安全科学与工程
    • 17 篇 交通运输工程
    • 11 篇 网络空间安全
  • 189 篇 理学
    • 78 篇 数学
    • 71 篇 生物学
    • 44 篇 物理学
    • 32 篇 统计学(可授理学、...
    • 25 篇 化学
    • 20 篇 系统科学
    • 11 篇 大气科学
  • 93 篇 管理学
    • 58 篇 管理科学与工程(可...
    • 41 篇 图书情报与档案管...
    • 26 篇 工商管理
  • 52 篇 医学
    • 44 篇 临床医学
    • 34 篇 基础医学(可授医学...
    • 23 篇 公共卫生与预防医...
    • 14 篇 药学(可授医学、理...
  • 18 篇 农学
    • 12 篇 作物学
  • 10 篇 经济学
    • 10 篇 应用经济学
  • 10 篇 法学
  • 9 篇 教育学
  • 1 篇 军事学

主题

  • 30 篇 deep learning
  • 30 篇 accuracy
  • 21 篇 real-time system...
  • 21 篇 machine learning
  • 20 篇 reviews
  • 19 篇 convolutional ne...
  • 17 篇 training
  • 15 篇 decision making
  • 14 篇 support vector m...
  • 14 篇 feature extracti...
  • 13 篇 medical services
  • 12 篇 data mining
  • 12 篇 machine learning...
  • 11 篇 predictive model...
  • 11 篇 artificial intel...
  • 10 篇 reliability
  • 10 篇 neural networks
  • 10 篇 semantics
  • 10 篇 data models
  • 9 篇 image segmentati...

机构

  • 13 篇 department of ar...
  • 11 篇 department of ar...
  • 8 篇 data science and...
  • 7 篇 datta meghe inst...
  • 7 篇 datta meghe inst...
  • 7 篇 center for data ...
  • 7 篇 department of ar...
  • 7 篇 munich center fo...
  • 7 篇 bifold - berlin ...
  • 7 篇 school of comput...
  • 6 篇 department of ar...
  • 6 篇 faculty of engin...
  • 6 篇 school of comput...
  • 6 篇 guangdong provin...
  • 6 篇 pazhou laborator...
  • 6 篇 data science and...
  • 5 篇 department of co...
  • 5 篇 department of ph...
  • 5 篇 department of ar...
  • 5 篇 national key lab...

作者

  • 19 篇 prateek verma
  • 18 篇 verma prateek
  • 12 篇 aditya barhate
  • 11 篇 foster ian
  • 10 篇 abhay tale
  • 9 篇 barhate aditya
  • 9 篇 tale abhay
  • 8 篇 müller klaus-rob...
  • 7 篇 srinivasulu redd...
  • 6 篇 samek wojciech
  • 5 篇 blaiszik ben
  • 5 篇 huerta e.a.
  • 5 篇 chard kyle
  • 5 篇 lapuschkin sebas...
  • 5 篇 jikar nayan
  • 5 篇 wang liwei
  • 4 篇 utkarsha pachara...
  • 4 篇 borsci simone
  • 4 篇 chard ryan
  • 4 篇 haeri maryam ami...

语言

  • 380 篇 英文
  • 122 篇 其他
  • 3 篇 中文
检索条件"机构=Department of Learning Data and Technology"
504 条 记 录,以下是361-370 订阅
排序:
PAC-Bayes meta-learning with implicit task-specific posteriors
arXiv
收藏 引用
arXiv 2020年
作者: Nguyen, Cuong Do, Thanh-Toan Carneiro, Gustavo The Australian Institute for Machine Learning University of Adelaide SA5000 Australia The Department of Data Science and AI Faculty of Information Technology Monash University Australia
We introduce a new and rigorously-formulated PAC-Bayes meta-learning algorithm that solves few-shot learning. Our proposed method extends the PAC-Bayes framework from a single task setting to the meta-learning multipl... 详细信息
来源: 评论
iGEM: a model system for team science and innovation
arXiv
收藏 引用
arXiv 2023年
作者: Santolini, Marc Blondel, Leo Palmer, Megan J. Ward, Robert N. Jeyaram, Rathin Brink, Kathryn R. Krishna, Abhijeet Barabási, Albert-László Université Paris Cité Inserm System Engineering and Evolution Dynamics ParisF-75004 France Learning Planet Institute ParisF-75004 France Network Science Institute Department of Physics Northeastern University BostonMA02115 United States Department of Bioengineering Stanford University StanfordCA United States Center for International Security and Cooperation Stanford University StanfordCA United States School of Public Policy Georgia Institute of Technology AtlantaGA United States Channing Division of Network Medicine Department of Medicine Brigham and Women’s Hospital Harvard Medical School BostonMA United States Department of Network and Data Science Central European University Budapest Hungary
Teams are a primary source of innovation in science and technology. Rather than examining the lone genius, scholarly and policy attention has shifted to understanding how team interactions produce new and useful ideas...
来源: 评论
On ADMM in deep learning: convergence and saturation-avoidance
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine learning Research 2021年 第1期22卷 9024-9090页
作者: Jinshan Zeng Shao-Bo Lin Yuan Yao Ding-Xuan Zhou School of Computer and Information Engineering Jiangxi Normal University Nanchang China and Liu Bie Ju Centre for Mathematical Sciences City University of Hong Kong Hong Kong and Department of Mathematics Hong Kong University of Science and Technology Hong Kong Center of Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University Xi'an China Department of Mathematics Hong Kong University of Science and Technology Hong Kong School of Data Science and Department of Mathematics City University of Hong Kong Hong Kong
In this paper, we develop an alternating direction method of multipliers (ADMM) for deep neural networks training with sigmoid-type activation functions (called sigmoid-ADMM pair), mainly motivated by the gradient-fre... 详细信息
来源: 评论
Consensus-Based Optimization Methods Converge Globally
arXiv
收藏 引用
arXiv 2021年
作者: Fornasier, Massimo Klock, Timo Riedl, Konstantin Technical University of Munich School of Computation Information and Technology Department of Mathematics Munich Germany Munich Center for Machine Learning Munich Germany Munich Data Science Institute Munich Germany Simula Research Laboratory Department of Numerical Analysis and Scientific Computing Oslo Norway University of San Diego Department of Mathematics San DiegoCA United States
In this paper, we study consensus-based optimization (CBO), which is a multi-agent metaheuristic derivative-free optimization method that can globally minimize nonconvex nonsmooth functions and is amenable to theoreti... 详细信息
来源: 评论
Correction: Multivariate clustering for maximizing the small cell users’ performance based on the dynamic interference alignment
收藏 引用
Wireless Networks 2023年 第1期30卷 593-593页
作者: Dakshinamoorthy, Prabakar Vaitilingam, Saminadan Sundar, Ramesh Department of Data Science and Business Systems School of Computing College of Engineering and Technology SRM Institute of Science and Technology Kattankulathur India Department of Electronics and Communication Engineering Puducherry Technological University Puducherry India Department of Artificial Intelligence and Machine Learning Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences Chennai India
来源: 评论
On the Utility Function of Experiments in Fundamental Science
arXiv
收藏 引用
arXiv 2025年
作者: Dorigo, Tommaso Doro, Michele Aehle, Max Gauger, Nicolas R. Awais, Muhammad Izbicki, Rafael Kieseler, Jan Masserano, Luca Nardi, Federico Vergara, Luis Recabarren Luleå University of Technology Laboratorievägen 14 Luleå97187 Sweden INFN - Sezione di Padova via F. Marzolo 8 Padova35131 Italy Universal Scientific Education and Research Network Italy Università di Padova Dipartimento di Fisica e Astronomia "G.Galilei" via F. Marzolo 8 Padova35131 Italy Gottlieb-Daimler-Strase Kaiserslautern67663 Germany Karlsruhe Institute for Technology Kaiserstrase 12 Karlsruhe76131 Germany Laboratoire de Physique de Clermont Auvergne 4 Avenue Blaise Pascal Aubière63170 France Centro di Ateneo di Studi e Attività Spaziali "Giuseppe Colombo" Via Venezia 15 PadovaI-35131 Italy Department of Statistics & Data Science Department of Machine Learning Carnegie Mellon University Pittsburgh United States Department of Statistics Federal University of São Carlos São Carlos Brazil
The majority of experiments in fundamental science today are designed to be multi-purpose: their aim is not simply to measure a single physical quantity or process, but rather to enable increased precision in the meas... 详细信息
来源: 评论
Traffic4cast at NeurIPS 2021 – Temporal and Spatial Few-Shot Transfer learning in Gridded Geo-Spatial Processes
arXiv
收藏 引用
arXiv 2022年
作者: Eichenberger, Christian Neun, Moritz Martin, Henry Herruzo, Pedro Spanring, Markus Lu, Yichao Choi, Sungbin Konyakhin, Vsevolod Lukashina, Nina Shpilman, Aleksei Wiedemann, Nina Raubal, Martin Wang, Bo Vu, Hai L. Mohajerpoor, Reza Cai, Chen Kim, Inhi Hermes, Luca Melnik, Andrew Velioglu, Riza Vieth, Markus Schilling, Malte Bojesomo, Alabi Al Marzouqi, Hasan Liatsis, Panos Santokhi, Jay Hillier, Dylan Yang, Yiming Sarwar, Joned Jordan, Anna Hewage, Emil Jonietz, David Tang, Fei Gruca, Aleksandra Kopp, Michael Kreil, David Hochreiter, Sepp Vienna Austria Institute of Cartography and Geoinformation ETH Zurich Switzerland Layer 6 AI Toronto Canada ITMO University Saint Petersburg Russia JetBrains Research Saint Petersburg Russia HSE University Saint Petersburg Russia Institute of Transport Studies Monash University ClaytonVIC Australia CSIRO’s Data61 Eveleigh Australia Institute Civil and Environmental Engineering Department Kongju National University Korea Republic of Machine Learning & Neuroinformatics Group Bielefeld University Germany Electrical Engineering and Computer Science Department Khalifa University Abu Dhabi United Arab Emirates Alchera Data Technologies Ltd Cambridge United Kingdom HERE Technologies Zurich Switzerland Silesian University of Technology Gliwice Poland Machine Learning Institute Johannes Kepler University Linz Austria
The IARAI Traffic4cast competitions at NeurIPS 2019 and 2020 showed that neural networks can successfully predict future traffic conditions 1 hour into the future on simply aggregated GPS probe data in time and space ... 详细信息
来源: 评论
Traffic4cast at NeurIPS 2022 – Predict Dynamics along Graph Edges from Sparse Node data: Whole City Traffic and ETA from Stationary Vehicle Detectors
arXiv
收藏 引用
arXiv 2023年
作者: Neun, Moritz Eichenberger, Christian Martin, Henry Spanring, Markus Siripurapu, Rahul Springer, Daniel Deng, Leyan Wu, Chenwang Lian, Defu Zhou, Min Lumiste, Martin Ilie, Andrei Wu, Xinhua Lyu, Cheng Lu, Qing-Long Mahajan, Vishal Lu, Yichao Li, Jiezhang Li, Junjun Gong, Yue-Jiao Grötschla, Florian Mathys, Joël Wei, Ye Haitao, He Fang, Hui Malm, Kevin Tang, Fei Kopp, Michael Kreil, David Hochreiter, Sepp Vienna Austria Institute of Cartography and Geoinformation ETH Zurich Switzerland School of Data Science University of Science and Technology of China China Huawei Noah’s Ark Lab Bolt Technology Tallinn Estonia University of Bucharest Bucharest Romania Department of Civil and Environmental Engineering Northeastern University BostonMA United States Transportation Systems Engineering Technical University of Munich Germany Layer 6 AI Toronto Canada School of Coumpute Science and Engineering South China University of Technology Guangzhou China ETH Zurich Switzerland Department of Computer Science Loughborough University Loughborough United Kingdom School of Architecture Building and Civil Engineering Loughborough University Loughborough United Kingdom HERE Technologies ChicagoIL United States Kaiko Zurich Switzerland Machine Learning Institute Johannes Kepler University Linz Austria
The global trends of urbanization and increased personal mobility force us to rethink the way we live and use urban space. The Traffic4cast competition series tackles this problem in a data-driven way, advancing the l... 详细信息
来源: 评论
data sharing in learning analytics: how context and group discussion influence the individual willingness to share
Humanities and Social Sciences Communications
收藏 引用
Humanities and Social Sciences Communications 2025年 第1期12卷 1-13页
作者: Louis Longin Deisy Briceno Oleksandra Poquet Faculty of Philosophy Philosophy of Science and the Study of Religion Ludwig-Maximilians-Universität München Munich Germany LEAPS Lab—LEarning Analytics and Practices in Systems Department of Educational Sciences School of Social Sciences and Technology Technical University of Munich Munich Germany Munich Data Science Institute Technical University of Munich Munich Germany Centre for Change and Complexity in Learning University of South Australia Adelaide Australia
The ethical integration of the data generated by learners into educational practices is of great importance now that data-rich technologies are prevalent in education. Despite the common agreement that learners should...
来源: 评论
Goodness-of-fit tests for Laplace, Gaussian and exponential power distributions based onλ-th power skewness and kurtosis
收藏 引用
Series Statistics 2023年 第1期57卷 94-122页
作者: Alain Desgagné Pierre Lafaye de Micheaux Frédéric Ouimet a Département de Mathématiques Université du Québec à Montréal Montréal Canada b AMIS Université Paul-Valéry Montpellier 3 Montpellier Francec PreMeDICaL - Precision Medicine by Data Integration and Causal Learning Inria Sophia Antipolis Franced Desbrest Institute of Epidemiology and Public Health Université de Montpellier Montpellier Francee School of Mathematics and Statistics UNSW Sydney NSW Australia f Division of Physics Mathematics and Astronomy California Institute of Technology Pasadena CA USAg Department of Mathematics and Statistics McGill University Montreal Canadah Centre de recherches Mathématiques Université de Montréal Montréal Canada
Temperature data, like many other measurements in quantitative fields, are usually modelled using a normal distribution. However, some distributions can offer a better fit while avoiding underestimation of tail event ... 详细信息
来源: 评论