咨询与建议

限定检索结果

文献类型

  • 264 篇 期刊文献
  • 240 篇 会议

馆藏范围

  • 504 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 292 篇 工学
    • 208 篇 计算机科学与技术...
    • 175 篇 软件工程
    • 56 篇 生物工程
    • 46 篇 信息与通信工程
    • 46 篇 控制科学与工程
    • 45 篇 生物医学工程(可授...
    • 33 篇 光学工程
    • 25 篇 化学工程与技术
    • 24 篇 电气工程
    • 22 篇 机械工程
    • 19 篇 安全科学与工程
    • 18 篇 电子科学与技术(可...
    • 17 篇 交通运输工程
    • 11 篇 网络空间安全
  • 189 篇 理学
    • 78 篇 数学
    • 71 篇 生物学
    • 44 篇 物理学
    • 32 篇 统计学(可授理学、...
    • 25 篇 化学
    • 20 篇 系统科学
    • 11 篇 大气科学
  • 93 篇 管理学
    • 58 篇 管理科学与工程(可...
    • 41 篇 图书情报与档案管...
    • 26 篇 工商管理
  • 52 篇 医学
    • 44 篇 临床医学
    • 34 篇 基础医学(可授医学...
    • 23 篇 公共卫生与预防医...
    • 14 篇 药学(可授医学、理...
  • 18 篇 农学
    • 12 篇 作物学
  • 10 篇 经济学
    • 10 篇 应用经济学
  • 10 篇 法学
  • 9 篇 教育学
  • 1 篇 军事学

主题

  • 30 篇 deep learning
  • 30 篇 accuracy
  • 21 篇 real-time system...
  • 21 篇 machine learning
  • 20 篇 reviews
  • 19 篇 convolutional ne...
  • 17 篇 training
  • 15 篇 decision making
  • 14 篇 support vector m...
  • 14 篇 feature extracti...
  • 13 篇 medical services
  • 12 篇 data mining
  • 12 篇 machine learning...
  • 11 篇 predictive model...
  • 11 篇 artificial intel...
  • 10 篇 reliability
  • 10 篇 neural networks
  • 10 篇 semantics
  • 10 篇 data models
  • 9 篇 image segmentati...

机构

  • 13 篇 department of ar...
  • 11 篇 department of ar...
  • 8 篇 data science and...
  • 7 篇 datta meghe inst...
  • 7 篇 datta meghe inst...
  • 7 篇 center for data ...
  • 7 篇 department of ar...
  • 7 篇 munich center fo...
  • 7 篇 bifold - berlin ...
  • 7 篇 school of comput...
  • 6 篇 department of ar...
  • 6 篇 faculty of engin...
  • 6 篇 school of comput...
  • 6 篇 guangdong provin...
  • 6 篇 pazhou laborator...
  • 6 篇 data science and...
  • 5 篇 department of co...
  • 5 篇 department of ph...
  • 5 篇 department of ar...
  • 5 篇 national key lab...

作者

  • 19 篇 prateek verma
  • 18 篇 verma prateek
  • 12 篇 aditya barhate
  • 11 篇 foster ian
  • 10 篇 abhay tale
  • 9 篇 barhate aditya
  • 9 篇 tale abhay
  • 8 篇 müller klaus-rob...
  • 7 篇 srinivasulu redd...
  • 6 篇 samek wojciech
  • 5 篇 blaiszik ben
  • 5 篇 huerta e.a.
  • 5 篇 chard kyle
  • 5 篇 lapuschkin sebas...
  • 5 篇 jikar nayan
  • 5 篇 wang liwei
  • 4 篇 utkarsha pachara...
  • 4 篇 borsci simone
  • 4 篇 chard ryan
  • 4 篇 haeri maryam ami...

语言

  • 380 篇 英文
  • 122 篇 其他
  • 3 篇 中文
检索条件"机构=Department of Learning Data and Technology"
504 条 记 录,以下是381-390 订阅
排序:
LimeSoDa: A dataset Collection for Benchmarking of Machine learning Regressors in Digital Soil Mapping
arXiv
收藏 引用
arXiv 2025年
作者: Schmidinger, Jonas Vogel, Sebastian Barkov, Viacheslav Pham, Anh-Duy Gebbers, Robin Tavakoli, Hamed Correa, Jose Tavares, Tiago R. Filippi, Patrick Jones, Edward J. Lukas, Vojtech Boenecke, Eric Ruehlmann, Joerg Schroeter, Ingmar Kramer, Eckart Paetzold, Stefan Kodaira, Masakazu Wadoux, Alexandre M.J.-C. Bragazza, Luca Metzger, Konrad Huang, Jingyi Valente, Domingos S.M. Safanelli, Jose L. Bottega, Eduardo L. Dalmolin, Ricardo S.D. Farkas, Csilla Steiger, Alexander Horst, Taciara Z. Ramirez-Lopez, Leonardo Scholten, Thomas Stumpf, Felix Rosso, Pablo Costa, Marcelo M. Zandonadi, Rodrigo S. Wetterlind, Johanna Atzmueller, Martin Osnabrück University Joint Lab Artificial Intelligence and Data Science Osnabrück Germany Department of Agromechatronics Potsdam Germany Piracicaba Brazil The University of Sydney Sydney Institute of Agriculture Sydney Australia Mendel University in Brno Department of Agrosystems and Bioclimatology Brno Czech Republic Leibniz Institute of Vegetable and Ornamental Crops Next Generation Horticultural Systems Grossbeeren Germany Eberswalde University for Sustainable Development Landscape Management and Nature Conservation Eberswalde Germany Soil Science and Soil Ecology Bonn Germany Tokyo University of Agriculture and Technology Institute of Agriculture Tokyo Japan LISAH Univ. Montpellier AgroParisTech INRAE IRD L'Institut Agro Montpellier France Agroscope Field-Crop Systems and Plant Nutrition Nyon Switzerland University of Wisconsin-Madison Department of Soil Science Madison United States Federal University of Viçosa Department of Agricultural Engineering Viçosa Brazil Woodwell Climate Research Center Falmouth United States Academic Coordination Santa Maria Brazil Soil Department Santa Maria Brazil Division of Environment and Natural Resources Aas Norway University of Rostock Chair of Geodesy and Geoinformatics Rostock Germany Federal Technological University of Paraná Dois Vizinhos Brazil BÜCHI Labortechnik AG Data Science Department Flawil Switzerland Imperial College London Imperial College Business School London United Kingdom University of Tübingen Department of Geosciences Tübingen Germany University of Tübingen DFG Cluster of Excellence Machine Learning for Science’ Germany Bern University of Applied Sciences Competence Center for Soils Zollikofen Switzerland Simulation and Data Science Müncheberg Germany Federal University of Jataí Institute of Agricultural Sciences Jatai Brazil Federal University of Mato Grosso Instute of Agricultural and Environmental Scinces Sinop Brazil Department of Soil and Environment Skara
Digital soil mapping (DSM) relies on a broad pool of statistical methods, yet determining the optimal method for a given context remains challenging and contentious. Benchmarking studies on multiple datasets are neede... 详细信息
来源: 评论
Prediction of Diblock Copolymer Morphology via Machine learning
arXiv
收藏 引用
arXiv 2023年
作者: Park, Hyun Yu, Boyuan Park, Juhae Sun, Ge Tajkhorshid, Emad de Pablo, Juan J. Schneider, Ludwig Theoretical and Computational Biophysics Group NIH Resource Center for Macromolecular Modeling and Bioinformatics Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign UrbanaIL61801 United States Center for Biophysics and Quantitative Biology University of Illinois at Urbana-Champaign UrbanaIL61801 United States Data Science and Learning Division Argonne National Laboratory LemontIL60439 United States Pritzker School of Molecular Engineering University of Chicago 5640 Ellis Ave ChicagoIL60637 United States Theoretical and Computational Biophysics Group Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign UrbanaIL61801 United States Department of Biochemistry University of Illinois at Urbana-Champaign UrbanaIL61801 United States
A machine learning approach is presented to accelerate the computation of block polymer morphology evolution for large domains over long timescales. The strategy exploits the separation of characteristic times between... 详细信息
来源: 评论
The Hitchhiker's Guide to Fused Twins: A Review of Access to Digital Twins in situ in Smart Cities
arXiv
收藏 引用
arXiv 2022年
作者: Grübel, Jascha Thrash, Tyler Aguilar, Leonel Gath-Morad, Michal Chatain, Julia Sumner, Robert W. Hölscher, Christoph Schinazi, Victor R. Cognitive Science ETH Zurich Switzerland Game Technology Center ETH Zurich Switzerland Visual Computing Group Harvard University United States Center for Sustainable Future Mobility ETH Zurich Switzerland Geoinformation Engineering ETH Zurich Switzerland Department of Biology Saint Louis University United States Data Science Systems and Services Group ETH Zurich Switzerland Department of Architecture University of Cambridge United Kingdom Bartlett School of Architecture University College London United Kingdom Professorship for Learning Sciences and Higher Education ETH Zurich Switzerland Department of Psychology Bond University Australia
Smart Cities already surround us, and yet they are still incomprehensibly far from directly impacting everyday life. While current Smart Cities are often inaccessible, the experience of everyday citizens may be enhanc... 详细信息
来源: 评论
Set-valued prediction in multi-class classification  31
Set-valued prediction in multi-class classification
收藏 引用
31st Benelux Conference on Artificial Intelligence and the 28th Belgian Dutch Conference on Machine learning, BNAIC/BENELEARN 2019
作者: Mortier, Thomas Wydmuch, Marek Dembczýnski, Krzysztof Hüllermeier, Eyke Waegeman, Willem Department of Data Analysis and Mathematical Modelling Ghent University Belgium Institute of Computing Science Poznán University of Technology Poland Intelligent Systems and Machine Learning Universität Paderborn Germany
In cases of uncertainty, a multi-class classifier preferably returns a set of candidate classes instead of predicting a single class label with little guarantee. More precisely, the classifier should strive for an opt... 详细信息
来源: 评论
Objective frequentist uncertainty quantification for atmospheric CO2 retrievals
arXiv
收藏 引用
arXiv 2020年
作者: Patil, Pratik Kuusela, Mikael Hobbs, Jonathan Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States Department of Statistics and Data Science Carnegie Mellon University PittsburghPA15213 United States Jet Propulsion Laboratory California Institute of Technology PasadenaCA91109 United States
The steadily increasing amount of atmospheric carbon dioxide (CO2) is affecting the global climate system and threatening the long-term sustainability of Earth's ecosystem. In order to better understand the source... 详细信息
来源: 评论
Insightful analysis of historical sources at scales beyond human capabilities using unsupervised Machine learning and XAI
arXiv
收藏 引用
arXiv 2023年
作者: Eberle, Oliver Büttner, Jochen El-Hajj, Hassan Montavon, Grégoire Müller, Klaus-Robert Valleriani, Matteo Machine Learning Group Technische Universität Berlin Marchstr. 23 Berlin10587 Germany BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Max Planck Institute for the History of Science Boltzmannstr. 22 Berlin14195 Germany Department of Mathematics and Computer Science Freie Universität Berlin Arnimallee 14 Berlin14195 Germany Department of Artificial Intelligence Korea University Seoul136-713 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg 4 Saarbrücken66123 Germany Institute of History and Philosophy of Science Technology and Literature Faculty I - Humanities and Educational Sciences Technische Universität Berlin Straße des 17. Juni 135 Berlin10623 Germany The Cohn Institute for the History and Philosophy of Science and Ideas Faculty of Humanities Tel Aviv University P.O.B. 39040 Ramat Aviv Tel Aviv6139001 Israel
Historical materials are abundant. Yet, piecing together how human knowledge has evolved and spread both diachronically and synchronically remains a challenge that can so far only be very selectively addressed. The va... 详细信息
来源: 评论
An EEG study on college students’ attention levels in a blended computer science class
收藏 引用
PLET: Programmed learning & Educational technology 2024年 第4期61卷
作者: Hengtao Tang Miao Dai Xu Du Jui-Long Hung Hao Li a Department of Educational Studies University of South Carolina Columbia SC USA b National Engineering Research Center for E-Learning Central China Normal University Wuhan Hubei China c National Engineering Laboratory for Educational Big Data Central China Normal University Wuhan Hubei Chinad Department of Educational Technology Boise State University Boise Idaho USA
ABSTRACTBlended learning has been widely integrated in college-level computer science education. Despite evidence about benefits of blended learning, students’ in-class activities remain underexplored. To afford effe... 详细信息
来源: 评论
learning Domain Invariant Representations by Joint Wasserstein Distance Minimization
arXiv
收藏 引用
arXiv 2021年
作者: Andéol, Léo Kawakami, Yusei Wada, Yuichiro Kanamori, Takafumi Müller, Klaus-Robert Montavon, Grégoire Machine Learning group Technische Universität Berlin Berlin10587 Germany Tokyo Institute of Technology Tokyo Japan Berlin Institute for the Foundations of Learning and Data – BIFOLD Berlin10587 Germany Fujitsu Laboratories Ltd. Japan RIKEN AIP Japan Max Planck Institute for Informatics Stuhlsatzenhausweg 4 Saarbrücken66123 Germany Department of Artificial Intelligence Korea University Seoul136-713 Korea Republic of Google Deepmind Berlin Germany Department of Mathematics and Computer Science Freie Universität Berlin Berlin14195 Germany
Domain shifts in the training data are common in practical applications of machine learning;they occur for instance when the data is coming from different sources. Ideally, a ML model should work well independently of... 详细信息
来源: 评论
Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review
arXiv
收藏 引用
arXiv 2023年
作者: Cheng, Sibo Quilodrán-Casas, César Ouala, Said Farchi, Alban Liu, Che Tandeo, Pierre Fablet, Ronan Lucor, Didier Iooss, Bertrand Brajard, Julien Xiao, Dunhui Janjic, Tijana Ding, Weiping Guo, Yike Carrassi, Alberto Bocquet, Marc Arcucci, Rossella Data Science Institute Department of Computing Imperial College London LondonSW7 2AZ United Kingdom Department of Earth Science and Engineering Imperial College London LondonSW7 2AZ United Kingdom Department of Computer Science and Engineering Hong Kong University of Science and Technology 999077 Hong Kong IMT Atlantique Lab-STICC UMR CNRS 6285 France and Odyssey Inria/IMT France RIKEN Center for Computational Science Kobe Japan CEREA École des Ponts and EDF R&D île-de-France France The Laboratoire Interdisciplinaire des Sciences du Numérique CNRS Paris-Saclay University OrsayF-91403 France 78401 Chatou France Institut de Mathématiques de Toulouse Toulouse31062 France SINCLAIR AI Lab Saclay France Bergen Norway School of Mathematical Sciences Tongji University Shanghai200092 China Mathematical Institute for Machine Learning and Data Science KU Eichstätt-Ingolstadt Bavaria Germany School of Information Science and Technology Nantong University Nantong226019 China Department of Physics and Astronomy Augusto Righi University of Bologna Bologna40124 Italy
data Assimilation (DA) and Uncertainty quantification (UQ) are extensively used in analysing and reducing error propagation in high-dimensional spatial-temporal dynamics. Typical applications span from computational f... 详细信息
来源: 评论
Automated Diagnosis of Cardiovascular Diseases from Cardiac Magnetic Resonance Imaging Using Deep learning Models: A Review
arXiv
收藏 引用
arXiv 2022年
作者: Jafari, Mahboobeh Shoeibi, Afshin Khodatars, Marjane Ghassemi, Navid Moridian, Parisa Delfan, Niloufar Alizadehsani, Roohallah Khosravi, Abbas Ling, Sai Ho Zhang, Yu-Dong Wang, Shui-Hua Gorriz, Juan M. Rokny, Hamid Alinejad Acharya, U. Rajendra Internship in BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering UNSW Sydney SydneyNSW2052 Australia Data Science and Computational Intelligence Institute University of Granada Spain Department of Medical Engineering Mashhad Branch Islamic Azad University Mashhad Iran Faculty of Computer Engineering Dept. of Artificial Intelligence Engineering K. N. Toosi University of Technology Tehran Iran Deakin University VIC3217 Australia Australia School of Computing and Mathematical Sciences University of Leicester Leicester United Kingdom Department of Psychiatry University of Cambridge United Kingdom BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering UNSW Sydney SydneyNSW2052 Australia UNSW Data Science Hub The University of New South Wales SydneyNSW2052 Australia Research Centre Macquarie University Sydney2109 Australia Ngee Ann Polytechnic Singapore599489 Singapore Dept. of Biomedical Informatics and Medical Engineering Asia University Taichung Taiwan Dept. of Biomedical Engineering School of Science and Technology Singapore University of Social Sciences Singapore
In recent years, cardiovascular diseases (CVDs) have become one of the leading causes of mortality globally. CVDs appear with minor symptoms and progressively get worse. The majority of people experience symptoms such... 详细信息
来源: 评论