咨询与建议

限定检索结果

文献类型

  • 71 篇 期刊文献
  • 45 篇 会议

馆藏范围

  • 116 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 66 篇 工学
    • 45 篇 计算机科学与技术...
    • 42 篇 软件工程
    • 22 篇 生物工程
    • 20 篇 生物医学工程(可授...
    • 14 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 11 篇 光学工程
    • 7 篇 电气工程
    • 6 篇 电子科学与技术(可...
    • 4 篇 土木工程
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 建筑学
    • 3 篇 化学工程与技术
    • 3 篇 安全科学与工程
  • 55 篇 理学
    • 26 篇 数学
    • 24 篇 生物学
    • 15 篇 统计学(可授理学、...
    • 11 篇 物理学
    • 10 篇 系统科学
    • 7 篇 化学
  • 22 篇 管理学
    • 12 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
    • 5 篇 公共管理
    • 4 篇 工商管理
  • 19 篇 医学
    • 13 篇 临床医学
    • 12 篇 基础医学(可授医学...
    • 10 篇 公共卫生与预防医...
    • 7 篇 药学(可授医学、理...
  • 4 篇 农学
    • 3 篇 作物学
  • 1 篇 法学
  • 1 篇 教育学

主题

  • 6 篇 machine learning
  • 5 篇 surveys
  • 4 篇 convolutional ne...
  • 3 篇 feature extracti...
  • 3 篇 training
  • 2 篇 tools
  • 2 篇 reinforcement le...
  • 2 篇 support vector m...
  • 2 篇 data processing
  • 2 篇 deep learning
  • 2 篇 hidden markov mo...
  • 2 篇 generative adver...
  • 2 篇 electroencephalo...
  • 2 篇 face recognition
  • 2 篇 edge detection
  • 2 篇 real-time system...
  • 2 篇 measurement unce...
  • 2 篇 costs
  • 2 篇 wearable sensors
  • 2 篇 decision making

机构

  • 14 篇 department of el...
  • 14 篇 department of el...
  • 10 篇 department of st...
  • 4 篇 department of st...
  • 4 篇 department artif...
  • 3 篇 stream data anal...
  • 3 篇 machine learning...
  • 3 篇 department of co...
  • 3 篇 translational da...
  • 3 篇 center for machi...
  • 3 篇 data analytics g...
  • 3 篇 national enginee...
  • 2 篇 department of mo...
  • 2 篇 university of sc...
  • 2 篇 machine learning...
  • 2 篇 nec oncolmmunity...
  • 2 篇 universidad pomp...
  • 2 篇 department of in...
  • 2 篇 center for mr re...
  • 2 篇 portabiles healt...

作者

  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 11 篇 bjoern m. eskofi...
  • 7 篇 srinivasulu redd...
  • 5 篇 eskofier bjoern ...
  • 5 篇 robert richer
  • 4 篇 tobias steiglede...
  • 4 篇 julius hannink
  • 4 篇 eskofier bjoern
  • 4 篇 jochen klucken
  • 4 篇 chen ziqi
  • 4 篇 min martin renqi...
  • 4 篇 ning xia
  • 3 篇 arne küderle
  • 3 篇 scholtes ingo
  • 3 篇 biggio luca
  • 3 篇 jürgen winkler
  • 3 篇 schwinn leo

语言

  • 100 篇 英文
  • 16 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Machine Learning and Data Analytics"
116 条 记 录,以下是81-90 订阅
排序:
Deep reinforcement learning for motion planning of mobile robots
arXiv
收藏 引用
arXiv 2019年
作者: Butyrev, Leonid Edelhäußer, Thorsten Mutschler, Christopher Fraunhofer Institute for Integrated Circuits Iis Precise Positioning and Analytics Department Machine Learning and Information Fusion Group Nuremberg Germany Computer Science Department Machine Learning and Data Analytics Lab Erlangen Germany
This paper presents a novel motion and trajectory planning algorithm for nonholonomic mobile robots that uses recent advances in deep reinforcement learning. Starting from a random initial state, i.e., position, veloc... 详细信息
来源: 评论
Accurately predicting anticancer peptide using an ensemble of heterogeneously trained classifiers
收藏 引用
Informatics in Medicine Unlocked 2023年 42卷
作者: Azim, Sayed Mehedi Sabab, Noor Hossain Nuri Noshadi, Iman Alinejad-Rokny, Hamid Sharma, Alok Shatabda, Swakkhar Dehzangi, Iman Center for Computational and Integrative Biology Rutgers University Camden 08102 NJ United States Department of Computer Science and Engineering United International University Plot 2 United City Madani Avenue BaddaDhaka 1212 Bangladesh Department of Bioengineering University of California Riverside 92507 CA United States BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering The University of New South Wales (UNSW Sydney) Sydney NSW 2052 Australia UNSW Data Science Hub UNSW Sydney Sydney NSW 2052 Australia Health Data Analytics Program AI-enabled Processes Research Centre Macquarie University Sydney 2109 Australia Institute for Integrated and Intelligent Systems Griffith University Brisbane Australia Laboratory for Medical Science Mathematics RIKEN Center for Integrative Medical Sciences Yokohama 230-0045 Japan Department of Computer Science Rutgers University Camden 08102 NJ United States
The use of therapeutic peptides for the treatment of cancer has received tremendous attention in recent years. Anticancer peptides (ACPs) are considered new anticancer drugs which have several advantages over chemistr... 详细信息
来源: 评论
Multidimensional scaling, Sammon mapping, and Isomap: Tutorial and survey
arXiv
收藏 引用
arXiv 2020年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
Multidimensional Scaling (MDS) is one of the first fundamental manifold learning methods. It can be categorized into several methods, i.e., classical MDS, kernel classical MDS, metric MDS, and non-metric MDS. Sammon m... 详细信息
来源: 评论
Stochastic Neighbor Embedding with Gaussian and Student-t Distributions: Tutorial and Survey
arXiv
收藏 引用
arXiv 2020年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
Stochastic Neighbor Embedding (SNE) is a manifold learning and dimensionality reduction method with a probabilistic approach. In SNE, every point is consider to be the neighbor of all other points with some probabilit... 详细信息
来源: 评论
A Deep Generative Model for Molecule Optimization via One Fragment Modification
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Ziqi Min, Martin Renqiang Parthasarathy, Srinivasan Ning, Xia The Ohio State University ColumbusOH43210 United States Machine Learning Department NEC Labs America PrincetonNJ08540 United States Translational Data Analytics Institute The Ohio State University ColumbusOH43210 United States
Molecule optimization is a critical step in drug development to improve desired properties of drug candidates through chemical modification. We developed a novel deep generative model Modof over molecular graphs for m... 详细信息
来源: 评论
Locally linear embedding and its variants: Tutorial and survey
arXiv
收藏 引用
arXiv 2020年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science & David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper for Locally Linear Embedding (LLE) and its variants. The idea of LLE is fitting the local structure of manifold in the embedding space. In this paper, we first cover LLE, kernel LLE... 详细信息
来源: 评论
learning with Group Noise
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Qizhou Yao, Jiangchao Gong, Chen Liu, Tongliang Gong, Mingming Yang, Hongxia Han, Bo Department of Computer Science Hong Kong Baptist University Hong Kong Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of MoE School of Computer Science and Engineering Nanjing University of Science and Technology China Data Analytics and Intelligence Lab Alibaba Group China Department of Computing Hong Kong Polytechnic University Hong Kong Trustworthy Machine Learning Lab School of Computer Science University of Sydney Australia School of Mathematics and Statistics University of Melbourne Australia
machine learning in the context of noise is a challenging but practical setting to plenty of real-world applications. Most of the previous approaches in this area focus on the pairwise relation (casual or correlationa... 详细信息
来源: 评论
Rigid and non-rigid motion compensation in weight-bearing cone-beam CT of the knee using (noisy) inertial measurements
arXiv
收藏 引用
arXiv 2021年
作者: Maier, Jennifer Nitschke, Marlies Choi, Jang-Hwan Gold, Garry Fahrig, Rebecca Eskofier, Bjoern M. Maier, Andreas Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Machine Learning and Data Analytics Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Division of Mechanical and Biomedical Engineering Ewha Womans University Seoul Korea Republic of Department of Radiology School of Medicine Stanford University StanfordCA United States Innovation Advanced Therapies Siemens Healthcare GmbH Forchheim Germany
Involuntary subject motion is the main source of artifacts in weight-bearing cone-beam CT of the knee. To achieve image quality for clinical diagnosis, the motion needs to be compensated. We propose to use inertial me... 详细信息
来源: 评论
Assessing Personality Traits of Team Athletes in Virtual Reality
Assessing Personality Traits of Team Athletes in Virtual Rea...
收藏 引用
Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), IEEE Conference on
作者: Markus Wirth Stefan Gradl Wolfgang A. Mehringer Richard Kulpa Hannes Rupprecht Dino Poimann Annemarie F. Laudanski Bjoern M. Eskofier Machine Learning & Data Analytics Univ. of Erlangen-Nürnberg (FAU) Erlangen Germany MM2S Lab University Rennes 2 Rennes France FC Red Bull Salzburg Academy Salzburg Austria Department of Kinesiology University of Waterloo Waterloo Ontario Canada
Assessment of personality traits is highly relevant in team sports in order to analyze the performance of an athlete under pressure when in competitive situations, for team-strategic decisions, to optimize command tra... 详细信息
来源: 评论
Ranking-based convolutional neural network models for peptide-MHC binding prediction
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Ziqi Min, Martin Renqiang Ning, Xia Computer Science and Engineering Department Ohio State University ColumbusOH United States Machine Learning Department NEC Labs America PrincetonNJ United States Biomedical Informatics Department Ohio State University ColumbusOH United States Translational Data Analytics Institute Ohio State University ColumbusOH United States
T-cell receptors can recognize foreign peptides bound to major histocompatibility complex (MHC) class-I proteins, and thus trigger the adaptive immune response. Therefore, identifying peptides that can bind to MHC cla... 详细信息
来源: 评论