咨询与建议

限定检索结果

文献类型

  • 491 篇 期刊文献
  • 349 篇 会议
  • 1 册 图书

馆藏范围

  • 841 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 506 篇 工学
    • 344 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 106 篇 生物工程
    • 71 篇 信息与通信工程
    • 67 篇 控制科学与工程
    • 64 篇 生物医学工程(可授...
    • 42 篇 光学工程
    • 40 篇 电气工程
    • 39 篇 安全科学与工程
    • 37 篇 化学工程与技术
    • 34 篇 电子科学与技术(可...
    • 23 篇 机械工程
    • 18 篇 仪器科学与技术
    • 18 篇 建筑学
    • 18 篇 土木工程
  • 385 篇 理学
    • 222 篇 数学
    • 130 篇 统计学(可授理学、...
    • 120 篇 生物学
    • 79 篇 物理学
    • 48 篇 化学
    • 39 篇 系统科学
  • 121 篇 管理学
    • 67 篇 管理科学与工程(可...
    • 55 篇 图书情报与档案管...
    • 38 篇 工商管理
  • 58 篇 医学
    • 46 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 28 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 22 篇 法学
    • 20 篇 社会学
  • 18 篇 农学
  • 16 篇 经济学
    • 16 篇 应用经济学
  • 5 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 53 篇 machine learning
  • 47 篇 deep learning
  • 43 篇 accuracy
  • 25 篇 convolutional ne...
  • 23 篇 real-time system...
  • 21 篇 reviews
  • 18 篇 decision making
  • 18 篇 training
  • 17 篇 medical services
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 17 篇 forecasting
  • 14 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 reinforcement le...
  • 13 篇 support vector m...
  • 13 篇 optimization
  • 13 篇 machine learning...
  • 12 篇 data models
  • 11 篇 scalability

机构

  • 58 篇 machine learning...
  • 46 篇 department of st...
  • 22 篇 munich center fo...
  • 21 篇 center for data ...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 center for machi...
  • 17 篇 machine learning...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 department of st...
  • 10 篇 department of ar...
  • 9 篇 department of st...
  • 8 篇 machine learning...

作者

  • 61 篇 ramdas aaditya
  • 21 篇 müller klaus-rob...
  • 19 篇 prateek verma
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 17 篇 verma prateek
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 montavon grégoir...
  • 11 篇 krahmer felix
  • 10 篇 ravikumar pradee...
  • 10 篇 do thanh-toan
  • 10 篇 wang hongjian
  • 10 篇 abhay tale

语言

  • 749 篇 英文
  • 89 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Machine Learning and Data Science"
841 条 记 录,以下是161-170 订阅
排序:
Sequential change detection via backward confidence sequences
arXiv
收藏 引用
arXiv 2023年
作者: Shekhar, Shubhanshu Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
We present a simple reduction from sequential estimation to sequential changepoint detection (SCD). In short, suppose we are interested in detecting changepoints in some parameter or functional θ of the underlying di...
来源: 评论
The extended Ville’s inequality for nonintegrable nonnegative supermartingale
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Hongjian Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
Following the initial work by Robbins, we rigorously present an extended theory of nonnegative supermartingales, requiring neither integrability nor finiteness. In particular, we derive a key maximal inequality foresh... 详细信息
来源: 评论
Generalized equivalences between subsampling and ridge regularization  23
Generalized equivalences between subsampling and ridge regul...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Pratik Patil Jin-Hong Du Department of Statistics University of California Berkeley CA Department of Statistics and Data Science & Machine Learning Department Carnegie Mellon University Pittsburgh PA
We establish precise structural and risk equivalences between subsampling and ridge regularization for ensemble ridge estimators. Specifically, we prove that linear and quadratic functionals of subsample ridge estimat...
来源: 评论
Huber-Robust Confidence Sequences
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Hongjian Ramdas, Aaditya Machine Learning Department Carnegie Mellon University United States Department of Statistics and Data Science Carnegie Mellon University United States
Confidence sequences are confidence intervals that can be sequentially tracked, and are valid at arbitrary data-dependent stopping times. This paper presents confidence sequences for a univariate mean of an unknown di...
来源: 评论
An Empirical Analysis on Spatial Reasoning Capabilities of Large Multimodal Models
arXiv
收藏 引用
arXiv 2024年
作者: Shiri, Fatemeh Guo, Xiao-Yu Far, Mona Golestan Yu, Xin Haffari, Gholamreza Li, Yuan-Fang Department of Data Science & AI Monash University Australia Australian Institute for Machine Learning University of Adelaide Australia School of Electrical Engineering and Computer Science University of Queensland Australia
Large Multimodal Models (LMMs) have achieved strong performance across a range of vision and language tasks. However, their spatial reasoning capabilities are under-investigated. In this paper, we construct a novel VQ... 详细信息
来源: 评论
Auditing Fairness by Betting
arXiv
收藏 引用
arXiv 2023年
作者: Chugg, Ben Cortes-Gomez, Santiago Wilder, Bryan Ramdas, Aaditya Machine Learning Department Carnegie Mellon University United States Department of Statistics and Data Science Carnegie Mellon University United States
We provide practical, efficient, and nonparametric methods for auditing the fairness of deployed classification and regression models. Whereas previous work relies on a fixed-sample size, our methods are sequential an... 详细信息
来源: 评论
A Review of machine learning Algorithms in Diabetes Management  4
A Review of Machine Learning Algorithms in Diabetes Manageme...
收藏 引用
4th International Conference on Sentiment Analysis and Deep learning, ICSADL 2025
作者: Gayaki, Unnati Daronde, Subodh Tale, Abhay Barhate, Aditya Datta Meghe Institute of Higher Education and Research Faculty of Engineering and Technology Department of Computer Science and Engineering Maharashtra Wardha India Faculty of Engineering and Technology Department of Biomedical Engineering Maharashtra Wardha India Datta Meghe Institute of Higher Education and Research Faculty of Engineering and Technology Department of Artificial Intelligence and Data Science Maharashtra Wardha India Datta Meghe Institute of Higher Education and Research Faculty of Engineering and Technology Department of Artificial Intelligence and Machine Learning Maharashtra Wardha India
Diabetes is a prevalent and chronic disease affecting millions worldwide, posing significant challenges in its management and treatment. This review article aims to explore the current and potential future roles of ma... 详细信息
来源: 评论
Reducing sequential change detection to sequential estimation
arXiv
收藏 引用
arXiv 2023年
作者: Shekhar, Shubhanshu Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
We consider the problem of sequential change detection, where the goal is to design a scheme for detecting any changes in a parameter or functional θ of the data stream distribution that has small detection delay, bu...
来源: 评论
Counterfactually Comparing Abstaining Classifiers
arXiv
收藏 引用
arXiv 2023年
作者: Choe, Yo Joong Gangrade, Aditya Ramdas, Aaditya Data Science Institute University of Chicago United States Department of EECS University of Michigan United States Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University United States
Abstaining classifiers have the option to abstain from making predictions on inputs that they are unsure about. These classifiers are becoming increasingly popular in high-stakes decision-making problems, as they can ... 详细信息
来源: 评论
Sequential Predictive Two-Sample and Independence Testing
arXiv
收藏 引用
arXiv 2023年
作者: Podkopaev, Aleksandr Ramdas, Aaditya Department of Statistics & Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
We study the problems of sequential nonparametric two-sample and independence testing. Sequential tests process data online and allow using observed data to decide whether to stop and reject the null hypothesis or to ... 详细信息
来源: 评论