咨询与建议

限定检索结果

文献类型

  • 494 篇 期刊文献
  • 355 篇 会议
  • 1 册 图书

馆藏范围

  • 850 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 513 篇 工学
    • 347 篇 计算机科学与技术...
    • 301 篇 软件工程
    • 109 篇 生物工程
    • 72 篇 信息与通信工程
    • 68 篇 生物医学工程(可授...
    • 67 篇 控制科学与工程
    • 42 篇 光学工程
    • 42 篇 电气工程
    • 39 篇 安全科学与工程
    • 37 篇 化学工程与技术
    • 34 篇 电子科学与技术(可...
    • 22 篇 机械工程
    • 18 篇 仪器科学与技术
    • 17 篇 建筑学
    • 17 篇 土木工程
  • 393 篇 理学
    • 225 篇 数学
    • 131 篇 统计学(可授理学、...
    • 122 篇 生物学
    • 82 篇 物理学
    • 51 篇 化学
    • 41 篇 系统科学
  • 121 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 55 篇 图书情报与档案管...
    • 38 篇 工商管理
  • 64 篇 医学
    • 51 篇 临床医学
    • 45 篇 基础医学(可授医学...
    • 31 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 21 篇 法学
    • 19 篇 社会学
  • 18 篇 农学
  • 15 篇 经济学
    • 15 篇 应用经济学
  • 6 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 54 篇 machine learning
  • 47 篇 deep learning
  • 44 篇 accuracy
  • 25 篇 convolutional ne...
  • 23 篇 real-time system...
  • 21 篇 reviews
  • 18 篇 medical services
  • 18 篇 decision making
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 17 篇 forecasting
  • 14 篇 artificial intel...
  • 14 篇 diseases
  • 14 篇 machine learning...
  • 13 篇 reinforcement le...
  • 13 篇 support vector m...
  • 13 篇 optimization
  • 12 篇 image segmentati...
  • 12 篇 data models

机构

  • 59 篇 machine learning...
  • 46 篇 department of st...
  • 22 篇 center for data ...
  • 22 篇 munich center fo...
  • 19 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 17 篇 machine learning...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 department of st...
  • 10 篇 department of ar...
  • 9 篇 department of st...
  • 8 篇 machine learning...

作者

  • 62 篇 ramdas aaditya
  • 20 篇 müller klaus-rob...
  • 19 篇 prateek verma
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 17 篇 verma prateek
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 11 篇 montavon grégoir...
  • 11 篇 krahmer felix
  • 10 篇 ravikumar pradee...
  • 10 篇 do thanh-toan
  • 10 篇 wang hongjian
  • 10 篇 abhay tale

语言

  • 707 篇 英文
  • 140 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Machine Learning and Data Science"
850 条 记 录,以下是171-180 订阅
排序:
MambaLRP: explaining selective state space sequence models  24
MambaLRP: explaining selective state space sequence models
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Farnoush Rezaei Jafari Grégoire Montavon Klaus-Robert Müller Oliver Eberle Machine Learning Group Technische Universität Berlin Berlin Germany and BIFOLD - Berlin Institute for the Foundations of Learning and Data Berlin Germany Department of Mathematics and Computer Science Freie Universitat Berlin Berlin Germany and BIFOLD - Berlin Institute for the Foundations of Learning and Data Berlin Germany and Machine Learning Group Technische Universität Berlin Berlin Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Berlin Germany and Machine Learning Group Technische Universität Berlin Berlin Germany and Department of Artificial Intelligence Korea University Seoul South Korea and Max Planck Institute for Informatics Saarbrücken Germany and Google DeepMind Berlin Germany
Recent sequence modeling approaches using selective state space sequence models, referred to as Mamba models, have seen a surge of interest. These models allow efficient processing of long sequences in linear time and...
来源: 评论
Merging uncertainty sets via majority vote
arXiv
收藏 引用
arXiv 2024年
作者: Gasparin, Matteo Ramdas, Aaditya Machine Learning Department Carnegie Mellon University United States Department of Statistics and Data Science Carnegie Mellon University United States Department of Statistical Sciences University of Padova Italy
Given K uncertainty sets that are arbitrarily dependent — for example, confidence intervals for an unknown parameter obtained with K different estimators, or prediction sets obtained via conformal prediction based on... 详细信息
来源: 评论
Conformal online model aggregation
arXiv
收藏 引用
arXiv 2024年
作者: Gasparin, Matteo Ramdas, Aaditya Machine Learning Department Carnegie Mellon University United States Department of Statistics and Data Science Carnegie Mellon University United States Department of Statistical Sciences University of Padova Italy
Conformal prediction equips machine learning models with a reasonable notion of uncertainty quantification without making strong distributional assumptions. It wraps around any black-box prediction model and converts ... 详细信息
来源: 评论
Deep learning Application for Images Augmentation in Electrical Component Classification System  3rd
Deep Learning Application for Images Augmentation in Electri...
收藏 引用
3rd International Conference on Advances in Information and Communication Technology, ICTA 2024
作者: Long, Nguyen The Huong, Nguyen Thu Lien, Pham Thi Gen, Anna Shmeleva Viet, Tran Tuan Department of Informatics Institute of Cybersecurity and Digital Technologies MIREA –Russian Technological University Moscow119454 Russia Laboratory of Artificial Intelligence and Machine Learning Institute of Information Technology and Data Science Irkutsk National Research Technical University Irkutsk664074 Russia University of Information and Communication Technology Thai Nguyen University Thai Nguyen70000 Viet Nam
The possibility of application a convolutional neural network to assess the augmentation of electrical images is proposed. We studied various conditions for sample preparation, optimizer algorithms, the number of pixe... 详细信息
来源: 评论
Homophily and Incentive Effects in Use of Algorithms  44
Homophily and Incentive Effects in Use of Algorithms
收藏 引用
44th Annual Meeting of the Cognitive science Society: Cognitive Diversity, CogSci 2022
作者: Fogliato, Riccardo Fazelpour, Sina Gupta, Shantanu Lipton, Zachary Danks, David Department of Statistics and Data Science Carnegie Mellon University United States Department of Philosophy and Religion Khoury College of Computer Sciences Northeastern University United States Machine Learning Department Carnegie Mellon University United States Halicioğlu Data Science Institute Department of Philosophy University of California San Diego United States
As algorithmic tools increasingly aid experts in making consequential decisions, the need to understand the precise factors that mediate their influence has grown commensurately. In this paper, we present a crowdsourc... 详细信息
来源: 评论
I Want’Em All (At Once) – Ultrametric Cluster Hierarchies
arXiv
收藏 引用
arXiv 2025年
作者: Draganov, Andrew Weber, Pascal Jørgensen, Rasmus Skibdahl Melanchton Beer, Anna Plant, Claudia Assent, Ira Department of Computer Science Aarhus University Aarhus Denmark Data Mining and Machine Learning University of Vienna Vienna Austria UniVie Doctoral School Computer Science University of Vienna Vienna Austria Data Science @ Uni Vienna University of Vienna Vienna Austria
Hierarchical clustering is a powerful tool for exploratory data analysis, organizing data into a tree of clusterings from which a partition can be chosen. This paper generalizes these ideas by proving that, for any re...
来源: 评论
Asymptotic and compound e-values: multiple testing and empirical Bayes
arXiv
收藏 引用
arXiv 2024年
作者: Ignatiadis, Nikolaos Wang, Ruodu Ramdas, Aaditya Department of Statistics and Data Science Institute University of Chicago United States Department of Statistics and Actuarial Science University of Waterloo Canada Departments of Statistics & Machine Learning Carnegie Mellon University United States
We explicitly define the notions of (exact, approximate or asymptotic) compound p-values and e-values, which have been implicitly presented and extensively used in the recent multiple testing literature. While it is k... 详细信息
来源: 评论
iSCAN: identifying causal mechanism shifts among nonlinear additive noise models  23
iSCAN: identifying causal mechanism shifts among nonlinear a...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Tianyu Chen Kevin Bello Bryon Aragam Pradeep Ravikumar Department of Statistics and Data Science University of Texas at Austin Booth School of Business University of Chicago and Machine Learning Department Carnegie Mellon University Booth School of Business University of Chicago Machine Learning Department Carnegie Mellon University
Structural causal models (SCMs) are widely used in various disciplines to represent causal relationships among variables in complex systems. Unfortunately, the underlying causal structure is often unknown, and estimat...
来源: 评论
Abnormal Load Patterns Detection in Smart Grids Using Temporal Convolutional Neural Network Based Gated Recurrent Units Networks with Multi-Head Temporal Attention  4
Abnormal Load Patterns Detection in Smart Grids Using Tempor...
收藏 引用
4th IEEE International Conference on Mobile Networks and Wireless Communications, ICMNWC 2024
作者: Balassem, Zayd Srikanteswara, Ramya Esakki Madura, E. Anjaneyulu, Madugula Devi, M. College of Technical Engineering The Islamic University Department of Computers Techniques Engineering Najaf Iraq Nitte Meenakshi Institute of Technology Department of Computer Science and Engineering Bengaluru India Bannari Amman Institute of Technology Department of Artificial Intelligence and Data Science India Gokaraju Rangaraju Institute of Engineering and Technology Department of Artificial Intelligence and Machine Learning Hyderabad India New Prince Shri Bhavani College of Engineering and Technology Department of Electrical and Electronics Engineering Chennai India
In recent era, the advancement in smart grid technologies and the integration of renewable energy sources have modernized the power distribution landscape. The efficiency and stability of overall system is ensured by ... 详细信息
来源: 评论
Advancing OCT-Based Retinal Disease Classification with XLSTM: A Framework for Variable-Length Volume Processing  22
Advancing OCT-Based Retinal Disease Classification with XLST...
收藏 引用
22nd IEEE International Symposium on Biomedical Imaging, ISBI 2025
作者: Sükei, Emese Oghbaie, Marzieh Schmidt-Erfurth, Ursula Klambauer, Günter Bogunović, Hrvoje Medical University of Vienna Optima Lab Department of Ophthalmology Austria Institute of Artificial Intelligence Medical University of Vienna Center for Medical Data Science Austria Institute for Machine Learning Johannes Kepler University Lit Ai Lab Austria Nxai GmbH Linz Austria
This paper presents a method for retinal disease classification using optical coherence tomography (OCT) scans, specifically addressing the challenge of variable B-scan density across dataset volumes. Deep learning me... 详细信息
来源: 评论