咨询与建议

限定检索结果

文献类型

  • 489 篇 期刊文献
  • 349 篇 会议
  • 1 册 图书

馆藏范围

  • 839 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 505 篇 工学
    • 344 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 106 篇 生物工程
    • 71 篇 信息与通信工程
    • 67 篇 控制科学与工程
    • 64 篇 生物医学工程(可授...
    • 42 篇 光学工程
    • 40 篇 电气工程
    • 39 篇 安全科学与工程
    • 37 篇 化学工程与技术
    • 34 篇 电子科学与技术(可...
    • 22 篇 机械工程
    • 18 篇 仪器科学与技术
    • 17 篇 建筑学
    • 17 篇 土木工程
  • 384 篇 理学
    • 221 篇 数学
    • 130 篇 统计学(可授理学、...
    • 120 篇 生物学
    • 79 篇 物理学
    • 48 篇 化学
    • 39 篇 系统科学
  • 120 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 55 篇 图书情报与档案管...
    • 38 篇 工商管理
  • 58 篇 医学
    • 46 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 28 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 21 篇 法学
    • 19 篇 社会学
  • 18 篇 农学
  • 15 篇 经济学
    • 15 篇 应用经济学
  • 5 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 53 篇 machine learning
  • 47 篇 deep learning
  • 43 篇 accuracy
  • 25 篇 convolutional ne...
  • 23 篇 real-time system...
  • 21 篇 reviews
  • 18 篇 decision making
  • 18 篇 training
  • 17 篇 medical services
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 17 篇 forecasting
  • 14 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 reinforcement le...
  • 13 篇 support vector m...
  • 13 篇 optimization
  • 13 篇 machine learning...
  • 12 篇 data models
  • 11 篇 scalability

机构

  • 58 篇 machine learning...
  • 46 篇 department of st...
  • 22 篇 munich center fo...
  • 21 篇 center for data ...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 center for machi...
  • 17 篇 machine learning...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 department of st...
  • 10 篇 department of ar...
  • 9 篇 department of st...
  • 8 篇 machine learning...

作者

  • 61 篇 ramdas aaditya
  • 21 篇 müller klaus-rob...
  • 19 篇 prateek verma
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 17 篇 verma prateek
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 montavon grégoir...
  • 11 篇 krahmer felix
  • 10 篇 ravikumar pradee...
  • 10 篇 do thanh-toan
  • 10 篇 wang hongjian
  • 10 篇 abhay tale

语言

  • 747 篇 英文
  • 89 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Machine Learning and Data Science"
839 条 记 录,以下是191-200 订阅
排序:
MambaLRP: Explaining Selective State Space Sequence Models  38
MambaLRP: Explaining Selective State Space Sequence Models
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Jafari, Farnoush Rezaei Montavon, Grégoire Müller, Klaus-Robert Eberle, Oliver Machine Learning Group Technische Universität Berlin Berlin10587 Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Department of Mathematics and Computer Science Freie Universität Berlin Arnimallee 14 Berlin14195 Germany Department of Artificial Intelligence Korea University Seoul136-713 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg 4 Saarbrücken66123 Germany Google DeepMind Berlin Germany
Recent sequence modeling approaches using selective state space sequence models, referred to as Mamba models, have seen a surge of interest. These models allow efficient processing of long sequences in linear time and...
来源: 评论
Unbiased Test Error Estimation in the Poisson Means Problem via Coupled Bootstrap Techniques
arXiv
收藏 引用
arXiv 2022年
作者: Oliveira, Natalia L. Lei, Jing Tibshirani, Ryan J. Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University United States
We propose a coupled bootstrap (CB) method for the test error of an arbitrary algorithm that estimates the mean in a Poisson sequence, often called the Poisson means problem. The idea behind our method is to generate ... 详细信息
来源: 评论
A Permutation-Free Kernel Independence Test
收藏 引用
Journal of machine learning Research 2023年 24卷
作者: Shekhar, Shubhanshu Kim, Ilmun Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University PittsburghPA15213 United States Department of Statistics and Data Science Department of Applied Statistics Yonsei University Seodaemun-gu Seoul03722 Korea Republic of Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States
In nonparametric independence testing, we observe i.i.d. data {(Xi,Yi)}in=1, where X ∈ X,Y ∈ Y lie in any general spaces, and we wish to test the null that X is independent of Y. Modern test statistics such as the k... 详细信息
来源: 评论
Domain Adaptation under Open Set Label Shift
arXiv
收藏 引用
arXiv 2022年
作者: Garg, Saurabh Balakrishnan, Sivaraman Lipton, Zachary C. Machine Learning Department Department of Statistics and Data Science Carnegie Mellon University United States
We introduce the problem of domain adaptation under Open Set Label Shift (OSLS) where the label distribution can change arbitrarily and a new class may arrive during deployment, but the class-conditional distributions... 详细信息
来源: 评论
Online Selective Conformal Prediction: Errors and Solutions
arXiv
收藏 引用
arXiv 2025年
作者: Sale, Yusuf Ramdas, Aaditya Institute of Computer Science Ludwig-Maximilians Universität München Germany Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States Germany
In online selective conformal inference, data arrives sequentially, and prediction intervals are constructed only when an online selection rule is met. Since online selections may break the exchangeability between the...
来源: 评论
Enhancing Alzheimer's Disease Diagnosis Using Multi-Relation Graph Convolutional Networks and Structural MRI data  5
Enhancing Alzheimer's Disease Diagnosis Using Multi-Relation...
收藏 引用
5th International Conference on IoT Based Control Networks and Intelligent Systems, ICICNIS 2024
作者: Kanna, P. Rajesh Gunasundari, C. Senthamarai, M. Pandiaraja, P. Nithin, P. Chitra, K. Bannari Amman Institute of Technology Department of Computer Science and Engineering Tamil Nadu Erode India SRM Institute of Science and Technology Department of Computer Science and Engineering Tamil Nadu Trichy India Nandha Engineering College Department of Artificial Intelligence and Data Science Tamil Nadu Erode India Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology Department of Computer Science and Engineering Tamil Nadu Chennai India Bannari Amman Institute of Technology Department of Artificial Intelligence and Machine Learning Tamil Nadu Erode India Kongu Engineering College Department of Computer Applications Tamil Nadu Erode India
Alzheimer's disease (AD) has substantial obstacles to early detection, which frequently leads to therapy delays. In this article a unique method that uses structural MRI data and Multi-Relation Graph Convolutional... 详细信息
来源: 评论
Development of Punjabi Automatic Speech Recognition Application for Mobile Devices
Development of Punjabi Automatic Speech Recognition Applicat...
收藏 引用
International Conference on Computing Communication Control and Automation (ICCUBEA)
作者: Puneet Mittal Sukhwinder Sharma Department of Artificial Intelligence & Machine Learning Manipal University Jaipur Jaipur India Department of Data Science & Engineering Manipal University Jaipur Jaipur India
Speech recognition based mobile device applications are gaining popularity due to their ease of use, flexibility as well as ability to provide hands-free access to device features and functions for persons without han...
来源: 评论
Federated learning in Medical Imaging: Part II: Methods, Challenges, and Considerations
收藏 引用
Journal of the American College of Radiology 2022年 第8期19卷 975-982页
作者: Darzidehkalani, Erfan Ghasemi-rad, Mohammad van Ooijen, P.M.A. Department of Radiation Oncology University Medical Center Groningen University of Groningen Groningen Netherlands Machine Learning Lab Data Science Center in Health University Medical Center Groningen University of Groningen Netherlands Department of Interventional Radiology Baylor College of Medicine Houston Texas
Federated learning is a machine learning method that allows decentralized training of deep neural networks among multiple clients while preserving the privacy of each client's data. Federated learning is instrumen... 详细信息
来源: 评论
Bounding the number of reticulation events for displaying multiple trees in a phylogenetic network
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Yufeng Zhang, Louxin School of Computing University of Connecticut StorrsCT06269 United States Department of Mathematics Center for Data Science and Machine Learning National University of Singapore Singapore119076 Singapore
Reconstructing a parsimonious phylogenetic network that displays multiple phylogenetic trees is an important problem in phylogenetics, where the complexity of the inferred networks is measured by reticulation numbers.... 详细信息
来源: 评论
Impact of Ensemble of Vector Embeddings on Speculative Retrieval Augmented Generation  5
Impact of Ensemble of Vector Embeddings on Speculative Retri...
收藏 引用
5th International Conference on data Intelligence and Cognitive Informatics, ICDICI 2024
作者: Kukreja, Sanjay Kumar, Tarun Bharate, Vishal Singh, Rajat Dasgupta, Abhijit Guha, Debashis Sp Jain School of Global Management Department of Machine Learning Mumbai India EClerx Services Ltd. Coe AI-ML Chandigarh India EClerx Services Ltd. Coe AI-ML Pune India EClerx Services Ltd. Coe AI-ML Mumbai India Sp Jain School of Global Management Department of Data Science Mumbai India
Recent developments in Natural Language Processing (NLP) have impacted all fields. Retrieval Augmented Generation (RAG) has played significant part in resent advancements in NLP applications. RAG architecture combines... 详细信息
来源: 评论