咨询与建议

限定检索结果

文献类型

  • 489 篇 期刊文献
  • 349 篇 会议
  • 1 册 图书

馆藏范围

  • 839 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 505 篇 工学
    • 344 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 106 篇 生物工程
    • 71 篇 信息与通信工程
    • 67 篇 控制科学与工程
    • 64 篇 生物医学工程(可授...
    • 42 篇 光学工程
    • 40 篇 电气工程
    • 39 篇 安全科学与工程
    • 37 篇 化学工程与技术
    • 34 篇 电子科学与技术(可...
    • 22 篇 机械工程
    • 18 篇 仪器科学与技术
    • 17 篇 建筑学
    • 17 篇 土木工程
  • 384 篇 理学
    • 221 篇 数学
    • 130 篇 统计学(可授理学、...
    • 120 篇 生物学
    • 79 篇 物理学
    • 48 篇 化学
    • 39 篇 系统科学
  • 120 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 55 篇 图书情报与档案管...
    • 38 篇 工商管理
  • 58 篇 医学
    • 46 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 28 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 21 篇 法学
    • 19 篇 社会学
  • 18 篇 农学
  • 15 篇 经济学
    • 15 篇 应用经济学
  • 5 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 53 篇 machine learning
  • 47 篇 deep learning
  • 43 篇 accuracy
  • 25 篇 convolutional ne...
  • 23 篇 real-time system...
  • 21 篇 reviews
  • 18 篇 decision making
  • 18 篇 training
  • 17 篇 medical services
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 17 篇 forecasting
  • 14 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 reinforcement le...
  • 13 篇 support vector m...
  • 13 篇 optimization
  • 13 篇 machine learning...
  • 12 篇 data models
  • 11 篇 scalability

机构

  • 58 篇 machine learning...
  • 46 篇 department of st...
  • 22 篇 munich center fo...
  • 21 篇 center for data ...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 center for machi...
  • 17 篇 machine learning...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 department of st...
  • 10 篇 department of ar...
  • 9 篇 department of st...
  • 8 篇 machine learning...

作者

  • 61 篇 ramdas aaditya
  • 21 篇 müller klaus-rob...
  • 19 篇 prateek verma
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 17 篇 verma prateek
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 montavon grégoir...
  • 11 篇 krahmer felix
  • 10 篇 ravikumar pradee...
  • 10 篇 do thanh-toan
  • 10 篇 wang hongjian
  • 10 篇 abhay tale

语言

  • 747 篇 英文
  • 89 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Machine Learning and Data Science"
839 条 记 录,以下是291-300 订阅
排序:
Ensuring the data Security and Integrity over Cloud Computing Environment using Novel Cipher Strategy
Ensuring the Data Security and Integrity over Cloud Computin...
收藏 引用
2023 Annual International Conference on Emerging Research Areas: International Conference on Intelligent Systems, AICERA/ICIS 2023
作者: Praveen Kumar, E. Yasotha, B. Narmadha, P.G. Chandrakala, P. Ushapriya, C. Chamundeeswari, G. Tamil Nadu Coimbatore India Srmist Department of Data Science and Business Systems Tamil Nadu kattankulathur India Panimalar Engineering College Department of Computer Science and Engineering Tamil Nadu Chennai India Prince Shri Venkateshwara Padmavathy Engineering College Department of Electrical and Electronics Engineering Tamil Nadu Chennai India St. Martin's Engineering College Department of Artificial Intelligence and Machine Learning Telangana India Saveetha Engineering College Department of Electronics and Communication Engineering Tamil Nadu Chennai India
The advent of cloud computing has revolutionized the Internet. Users may effortlessly collaborate, back up, and access their information from any location thanks to cloud computing. When it comes to providing IT enabl... 详细信息
来源: 评论
DISCO: Internal Evaluation of Density-Based Clustering
arXiv
收藏 引用
arXiv 2025年
作者: Beer, Anna Krieger, Lena Weber, Pascal Ritzert, Martin Assent, Ira Plant, Claudia Faculty of Computer Science University of Vienna Vienna Austria IAS-8: Data Analytics and Machine Learning Forschungszentrum Jülich Jülich Germany UniVie Doctoral School Computer Science University of Vienna Vienna Austria Data Science @ Uni Vienna University of Vienna Vienna Austria Institute of Computer Science and Campus Institute Data Science University of Göttingen Göttingen Germany Department of Computer Science Aarhus University Aarhus Denmark
In density-based clustering, clusters are areas of high object density separated by lower object density areas. This notion supports arbitrarily shaped clusters and automatic detection of noise points that do not belo... 详细信息
来源: 评论
Monitoring AI-modified content at scale: a case study on the impact of ChatGPT on AI conference peer reviews  24
Monitoring AI-modified content at scale: a case study on the...
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Weixin Liang Zachary Izzo Yaohui Zhang Haley Lepp Hancheng Cao Xuandong Zhao Lingjiao Chen Haotian Ye Sheng Liu Zhi Huang Daniel A. McFarland James Y. Zou Department of Computer Science Stanford University Machine Learning Department NEC Labs America Department of Electrical Engineering Stanford University Graduate School of Education Stanford University Department of Computer Science and Department of Management Science and Engineering Stanford University Department of Computer Science UC Santa Barbara Department of Biomedical Data Science Stanford University Graduate School of Education and Department of Sociology and Graduate School of Business Stanford University Department of Computer Science and Department of Electrical Engineering and Department of Biomedical Data Science Stanford University
We present an approach for estimating the fraction of text in a large corpus which is likely to be substantially modified or produced by a large language model (LLM). Our maximum likelihood model leverages expert-writ...
来源: 评论
S$^\text{3}$Attention: Improving Long Sequence Attention With Smoothed Skeleton Sketching
收藏 引用
IEEE Journal of Selected Topics in Signal Processing 2024年 第6期18卷 985-996页
作者: Xue Wang Tian Zhou Jianqing Zhu Jialin Liu Kun Yuan Tao Yao Wotao Yin Rong Jin HanQin Cai Alibaba Group Bellevue WA USA Computer Electrical and Mathematical Science and Engineering Division King Abdullah University of Science and Technology Thuwal Saudi Arabia Department of Statistics and Data Science University of Central Florida Orlando FL USA Center for Machine Learning Research Peking University Beijing China Antai College of Economics and Management Shanghai Jiao Tong University Shanghai China Meta Menlo Park CA USA Department of Statistics and Data Science and the Department of Computer Science University of Central Florida Orlando FL USA
Attention based models have achieved many remarkable breakthroughs in numerous applications. However, the quadratic complexity of Attention makes the vanilla Attention based models hard to apply to long sequence tasks... 详细信息
来源: 评论
Generalized independent noise condition for estimating causal structure with latent variables
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2024年 第1期25卷 9044-9104页
作者: Feng Xie Biwei Huang Zhengming Chen Ruichu Cai Clark Glymour Zhi Geng Kun Zhang Department of Applied Statistics Beijing Technology and Business University Beijing China Halicioglu Data Science Institute (HDSI) University of California San Diego La Jolla San Diego California School of Computer Science Guangdong University of Technology Guangzhou China and Machine Learning Department Mohamed bin Zayed University of Artificial Intelligence Abu Dhabi UAE School of Computer Science Guangdong University of Technology Guangzhou China Department of Philosophy Carnegie Mellon University Pittsburgh PA Department of Philosophy Carnegie Mellon University Pittsburgh PA and Machine Learning Department Mohamed bin Zayed University of Artificial Intelligence Abu Dhabi UAE
We investigate the challenging task of learning causal structure in the presence of latent variables, including locating latent variables, determining their quantity, and identifying causal relationships among both la... 详细信息
来源: 评论
Catoni-style confidence sequences for heavy-tailed mean estimation
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Hongjian Ramdas, Aaditya Machine Learning Department Carnegie Mellon University United States Department of Statistics and Data Science Carnegie Mellon University United States
A confidence sequence (CS) is a sequence of confidence intervals that is valid at arbitrary data-dependent stopping times. These are useful in applications like A/B testing, multi-armed bandits, off-policy evaluation,...
来源: 评论
A permutation-free kernel two-sample test
arXiv
收藏 引用
arXiv 2022年
作者: Shekhar, Shubhanshu Kim, Ilmun Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States Department of Statistics and Data Science Yonsei University Korea Republic of
The kernel Maximum Mean Discrepancy (MMD) is a popular multivariate distance metric between distributions that has found utility in two-sample testing. The usual kernel-MMD test statistic is a degenerate U-statistic u... 详细信息
来源: 评论
Risk-limiting Financial Audits via Weighted Sampling without Replacement
arXiv
收藏 引用
arXiv 2023年
作者: Shekhar, Shubhanshu Xu, Ziyu Lipton, Zachary C. Liang, Pierre J. Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States Tepper School of Business Carnegie Mellon University United States
We introduce the notion of a risk-limiting financial auditing (RLFA): given N transactions, the goal is to estimate the total misstated monetary fraction (m∗) to a given accuracy ϵ, with confidence 1-δ. We do this by... 详细信息
来源: 评论
Well-posedness of an evaporation model for a spherical droplet exposed to an air flow
arXiv
收藏 引用
arXiv 2023年
作者: Bänsch, Eberhard Doß, Martin Gräser, Carsten Ray, Nadja Department of Mathematics Friedrich-Alexander University Erlangen-Nürnberg Erlangen Germany Mathematical Institute for Machine Learning and Data Science Catholic University Eichstätt-Ingolstadt Ingolstadt Germany
MSC Codes 35Q79 (Primary) 35A01, 35K55, 80A19, 80M10 (Secondary)In this paper, we address the well-posedness of an evaporation model for a spherical liquid droplet taking into account the convective impact of an air f... 详细信息
来源: 评论
PASS: Peer-Agreement based Sample Selection for Training with Noisy Labels
arXiv
收藏 引用
arXiv 2023年
作者: Garg, Arpit Nguyen, Cuong Felix, Rafael Do, Thanh-Toan Carneiro, Gustavo Australian Institute for Machine Learning University of Adelaide Australia Centre for Vision Speech and Signal Processing University of Surrey United Kingdom Department of Data Science and AI Monash University Australia
The prevalence of noisy-label samples poses a significant challenge in deep learning, inducing overfitting effects. This has, therefore, motivated the emergence of learning with noisy-label (LNL) techniques that focus... 详细信息
来源: 评论