咨询与建议

限定检索结果

文献类型

  • 489 篇 期刊文献
  • 349 篇 会议
  • 1 册 图书

馆藏范围

  • 839 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 505 篇 工学
    • 344 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 106 篇 生物工程
    • 71 篇 信息与通信工程
    • 67 篇 控制科学与工程
    • 64 篇 生物医学工程(可授...
    • 42 篇 光学工程
    • 40 篇 电气工程
    • 39 篇 安全科学与工程
    • 37 篇 化学工程与技术
    • 34 篇 电子科学与技术(可...
    • 22 篇 机械工程
    • 18 篇 仪器科学与技术
    • 17 篇 建筑学
    • 17 篇 土木工程
  • 384 篇 理学
    • 221 篇 数学
    • 130 篇 统计学(可授理学、...
    • 120 篇 生物学
    • 79 篇 物理学
    • 48 篇 化学
    • 39 篇 系统科学
  • 120 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 55 篇 图书情报与档案管...
    • 38 篇 工商管理
  • 58 篇 医学
    • 46 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 28 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 21 篇 法学
    • 19 篇 社会学
  • 18 篇 农学
  • 15 篇 经济学
    • 15 篇 应用经济学
  • 5 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 53 篇 machine learning
  • 47 篇 deep learning
  • 43 篇 accuracy
  • 25 篇 convolutional ne...
  • 23 篇 real-time system...
  • 21 篇 reviews
  • 18 篇 decision making
  • 18 篇 training
  • 17 篇 medical services
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 17 篇 forecasting
  • 14 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 reinforcement le...
  • 13 篇 support vector m...
  • 13 篇 optimization
  • 13 篇 machine learning...
  • 12 篇 data models
  • 11 篇 scalability

机构

  • 58 篇 machine learning...
  • 46 篇 department of st...
  • 22 篇 munich center fo...
  • 21 篇 center for data ...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 center for machi...
  • 17 篇 machine learning...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 department of st...
  • 10 篇 department of ar...
  • 9 篇 department of st...
  • 8 篇 machine learning...

作者

  • 61 篇 ramdas aaditya
  • 21 篇 müller klaus-rob...
  • 19 篇 prateek verma
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 17 篇 verma prateek
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 montavon grégoir...
  • 11 篇 krahmer felix
  • 10 篇 ravikumar pradee...
  • 10 篇 do thanh-toan
  • 10 篇 wang hongjian
  • 10 篇 abhay tale

语言

  • 747 篇 英文
  • 89 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Machine Learning and Data Science"
839 条 记 录,以下是311-320 订阅
排序:
Stock Market Forecasting Using LSTM
Stock Market Forecasting Using LSTM
收藏 引用
Communication & Computing (WCONF), World Conference on
作者: J. Aswini Dinesh S C. Lakshmipriya Lokesh Krishnaa M Siva Subramanian R Dept of Artificial Intelligence & Machine Learning Saveetha Engineering College(Autonomous) Department of Artificial Intelligence and Data Science Saveetha Engineering College(Autonomous) Department CSE S.A. Engineering College Department CSE R.M.K College of Engineering and Technology
In this research paper, a novel methodology for forecasting stock market trends is presented: the utilization of Long Short-Term Memory networks, which are a part of RNN network. This model effectively incorporates th... 详细信息
来源: 评论
TOPOGRAPH: AN EFFICIENT GRAPH-BASED FRAMEWORK FOR STRICTLY TOPOLOGY PRESERVING IMAGE SEGMENTATION
arXiv
收藏 引用
arXiv 2024年
作者: Lux, Laurin Berger, Alexander H. Weers, Alexander Stucki, Nico Rueckert, Daniel Bauer, Ulrich Paetzold, Johannes C. School of Computation Information and Technology Technical University of Munich Germany Department of Computing Imperial College London United Kingdom Munich Center for Machine Learning Germany Munich Data Science Institute Technical University of Munich Munich Germany
Topological correctness plays a critical role in many image segmentation tasks, yet most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy. Existing topology-aware met... 详细信息
来源: 评论
ECTSum: A New Benchmark dataset For Bullet Point Summarization of Long Earnings Call Transcripts
arXiv
收藏 引用
arXiv 2022年
作者: Mukherjee, Rajdeep Bohra, Abhinav Banerjee, Akash Sharma, Soumya Hegde, Manjunath Shaikh, Afreen Shrivastava, Shivani Dasgupta, Koustuv Ganguly, Niloy Ghosh, Saptarshi Goyal, Pawan Department of Computer Science and Engineering IIT Kharagpur India Goldman Sachs Data Science and Machine Learning Group India Leibniz University of Hannover Germany
Despite tremendous progress in automatic summarization, state-of-the-art methods are predominantly trained to excel in summarizing short newswire articles, or documents with strong layout biases such as scientific art... 详细信息
来源: 评论
Partial counterfactual identification and uplift modeling: theoretical results and real-world assessment
arXiv
收藏 引用
arXiv 2022年
作者: Verhelst, Théo Mercier, Denis Shrestha, Jeevan Bontempi, Gianluca Machine Learning Group Department of Computer Science Université Libre de Bruxelles Brussels Belgium Data Science Team Orange Belgium Brussels Belgium
Counterfactuals are central in causal human reasoning and the scientific discovery process. The uplift, also called conditional average treatment effect, measures the causal effect of some action, or treatment, on the...
来源: 评论
Unleashing WSN Potential: Bowerbird Optimized Energy-Conscious Multipath Clustering with Causal Dilated Cosine for Enhanced Load Balancing  4
Unleashing WSN Potential: Bowerbird Optimized Energy-Conscio...
收藏 引用
4th International Conference on Sentiment Analysis and Deep learning, ICSADL 2025
作者: Joon, Rakesh Kumar Anitha, R. Selvan, Saravana Latha Mageshwari, P.S. Gayathri Priya, S. Malathi, K. Ganga Institute of Technology and Management Department of Electronics and Communication Engineering Haryana Kablana124104 India S.A. Engineering College Department of Artificial Intelligence and Data Science Tamil Nadu Chennai600077 India School of Professional Engineering Manukau Institute of Technology Auckland2104 New Zealand Tamil Nadu Kavaraipettai601206 India R.M.D. Engineering College Department of Electronics and Communication Engineering Tamil Nadu Kavaraipettai601206 India Saveetha Engineering College Department of Artificial Intelligence and Machine Learning Tamil Nadu Chennai602105 India
Wireless Sensor Networks (WSNs) are essential in the collection of real time data across different fields, including environmental monitoring and process control. However, due to the bounded amount of energy in sensor... 详细信息
来源: 评论
Quantization of Bandlimited Graph Signals
Quantization of Bandlimited Graph Signals
收藏 引用
International Conference on Sampling Theory and Applications (SampTA)
作者: Felix Krahmer He Lyu Rayan Saab Anna Veselovska Rongrong Wang Department of Mathematics & Munich Data Science Institute Technical University of Munich and Munich Center for Machine Learning Garching/Munich Germany Department of Mathematics & Halicioglu Data Science Institute University of California San Diego San Diego USA Department of Computational Mathematics Science and Engineering & Department of Mathematics Michigan State University East Lansing USA
Graph models and graph-based signals are becoming increasingly important in machine learning, natural sciences, and modern signal processing. In this paper, we address the problem of quantizing bandlimited graph signa...
来源: 评论
XpertAI: uncovering model strategies for sub-manifolds
arXiv
收藏 引用
arXiv 2024年
作者: Letzgus, Simon Müller, Klaus-Robert Montavon, Grégoire Machine Learning Group Technische Universität Berlin Germany BIFOLD Berlin Institute for the Foundations of Learning and Data Berlin Germany Department of Artificial Intelligence Korea University Seoul Korea Republic of Max Planck Institute for Informatics Saarbrücken Germany Department of Mathematics and Computer Science Freie Universität Berlin Germany
In recent years, Explainable AI (XAI) methods have facilitated profound validation and knowledge extraction from ML models. While extensively studied for classification, few XAI solutions have addressed the challenges... 详细信息
来源: 评论
Modeling lens potentials with continuous neural fields in galaxy-scale strong lenses
arXiv
收藏 引用
arXiv 2022年
作者: Biggio, Luca Vernardos, Georgios Galan, Aymeric Peel, Austin Data Analytics Lab Institute of Machine Learning Department of Computer Science ETHZ Switzerland Observatoire de Sauverny Versoix1290 Switzerland
Strong gravitational lensing is a unique observational tool for studying the dark and luminous mass distribution both within and between galaxies. Given the presence of substructures, current strong lensing observatio... 详细信息
来源: 评论
Enhancing Interpretability: The Role of Explainable AI in Healthcare Diagnostics
Enhancing Interpretability: The Role of Explainable AI in He...
收藏 引用
Electronics and Renewable Systems (ICEARS), International Conference on
作者: Nikita Zade Meher Langote Prateek Verma Department of Artificial Intelligence & Data Science Faculty of Engineering & Technology Datta Meghe Institute of Higher Education (DU) Sawangi Maharashtra India Department of Artificial Intelligence & Machine Learning Faculty of Engineering & Technology Datta Meghe Institute of Higher Education (DU) Sawangi Maharashtra India
XAI is now transforming the use of AI in diagnosing diseases by overcoming some of the problems inherent in most black-box approaches. In time-sensitive speciality areas like computer-aided diagnosis, image analysis, ... 详细信息
来源: 评论
Instance-Dependent Noisy Label learning via Graphical Modelling
arXiv
收藏 引用
arXiv 2022年
作者: Garg, Arpit Nguyen, Cuong Felix, Rafael Do, Thanh-Toan Carneiro, Gustavo Australian Institute for Machine Learning University of Adelaide Australia Department of Data Science and AI Faculty of Information Technology Monash University Australia
Noisy labels are unavoidable yet troublesome in the ecosystem of deep learning because models can easily overfit them. There are many types of label noise, such as symmetric, asymmetric and instance-dependent noise (I... 详细信息
来源: 评论