咨询与建议

限定检索结果

文献类型

  • 489 篇 期刊文献
  • 349 篇 会议
  • 1 册 图书

馆藏范围

  • 839 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 505 篇 工学
    • 344 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 106 篇 生物工程
    • 71 篇 信息与通信工程
    • 67 篇 控制科学与工程
    • 64 篇 生物医学工程(可授...
    • 42 篇 光学工程
    • 40 篇 电气工程
    • 39 篇 安全科学与工程
    • 37 篇 化学工程与技术
    • 34 篇 电子科学与技术(可...
    • 22 篇 机械工程
    • 18 篇 仪器科学与技术
    • 17 篇 建筑学
    • 17 篇 土木工程
  • 384 篇 理学
    • 221 篇 数学
    • 130 篇 统计学(可授理学、...
    • 120 篇 生物学
    • 79 篇 物理学
    • 48 篇 化学
    • 39 篇 系统科学
  • 120 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 55 篇 图书情报与档案管...
    • 38 篇 工商管理
  • 58 篇 医学
    • 46 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 28 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 21 篇 法学
    • 19 篇 社会学
  • 18 篇 农学
  • 15 篇 经济学
    • 15 篇 应用经济学
  • 5 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 53 篇 machine learning
  • 47 篇 deep learning
  • 43 篇 accuracy
  • 25 篇 convolutional ne...
  • 23 篇 real-time system...
  • 21 篇 reviews
  • 18 篇 decision making
  • 18 篇 training
  • 17 篇 medical services
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 17 篇 forecasting
  • 14 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 reinforcement le...
  • 13 篇 support vector m...
  • 13 篇 optimization
  • 13 篇 machine learning...
  • 12 篇 data models
  • 11 篇 scalability

机构

  • 58 篇 machine learning...
  • 46 篇 department of st...
  • 22 篇 munich center fo...
  • 21 篇 center for data ...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 center for machi...
  • 17 篇 machine learning...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 department of st...
  • 10 篇 department of ar...
  • 9 篇 department of st...
  • 8 篇 machine learning...

作者

  • 61 篇 ramdas aaditya
  • 21 篇 müller klaus-rob...
  • 19 篇 prateek verma
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 17 篇 verma prateek
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 montavon grégoir...
  • 11 篇 krahmer felix
  • 10 篇 ravikumar pradee...
  • 10 篇 do thanh-toan
  • 10 篇 wang hongjian
  • 10 篇 abhay tale

语言

  • 747 篇 英文
  • 89 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Machine Learning and Data Science"
839 条 记 录,以下是321-330 订阅
排序:
Assumption-Lean Post-Integrated Inference with Negative Control Outcomes
arXiv
收藏 引用
arXiv 2024年
作者: Du, Jin-Hong Roeder, Kathryn Wasserman, Larry Department of Statistics and Data Science Carnegie Mellon University PittsburghPA15213 United States Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States Computational Biology Department Carnegie Mellon University PittsburghPA15213 United States
data integration methods aim to extract low-dimensional embeddings from high-dimensional outcomes to remove unwanted variations, such as batch effects and unmeasured covariates, across heterogeneous datasets. However,... 详细信息
来源: 评论
A Comprehensive Review of Mojo: A High-Performance Programming Language
A Comprehensive Review of Mojo: A High-Performance Programmi...
收藏 引用
Mobile Computing and Sustainable Informatics (ICMCSI), International Conference on
作者: Parth Dhananjay Akre Utkarsha Pacharaney Department of Artificial Intelligence and Data Science Faculty of Engineering and Technology Datta Meghe Institute of Higher Education and Research Wardha Maharashtra India Department of Artificial Intelligence and Machine Learning Faculty of Engineering and Technology Datta Meghe Institute of Higher Education and Research Wardha Maharashtra India
As artificial intelligence continues to advance at an unprecedented pace, the selection of programming languages significantly affects development processes, workflows, and outcomes. Mojo, a novel programming language... 详细信息
来源: 评论
A unified view of label shift estimation  34
A unified view of label shift estimation
收藏 引用
34th Conference on Neural Information Processing Systems, NeurIPS 2020
作者: Garg, Saurabh Wu, Yifan Balakrishnan, Sivaraman Lipton, Zachary C. Machine Learning Department Department of Statistics and Data Science Carnegie Mellon University United States
Under label shift, the label distribution p(y) might change but the class-conditional distributions p(x|y) do not. There are two dominant approaches for estimating the label marginal. BBSE, a moment-matching approach ... 详细信息
来源: 评论
Efficient dataset generation for machine learning halide perovskite alloys
收藏 引用
Physical Review Materials 2025年 第5期9卷 053802-053802页
作者: Henrietta Homm Jarno Laakso Patrick Rinke Department of Applied Physics Aalto University 00076 Aalto Finland Physics Department Technical University of Munich Garching Germany Atomistic Modelling Center Munich Data Science Institute Technical University of Munich Garching Germany Munich Center for Machine Learning (MCML) Munich Germany
Lead-based perovskite solar cells have reached high efficiencies, but toxicity and lack of stability hinder their wide-scale adoption. These issues have been partially addressed through compositional engineering of pe... 详细信息
来源: 评论
Structured Multi-Track Accompaniment Arrangement via Style Prior Modelling
arXiv
收藏 引用
arXiv 2023年
作者: Zhao, Jingwei Xia, Gus Wang, Ziyu Wang, Ye Institute of Data Science NUS Singapore School of Computing NUS Singapore Integrative Sciences and Engineering Programme NUS Graduate School Singapore Machine Learning Department MBZUAI United Arab Emirates Computer Science Department NYU Shanghai China
In the realm of music AI, arranging rich and structured multi-track accompaniments from a simple lead sheet presents significant challenges. Such challenges include maintaining track cohesion, ensuring long-term coher... 详细信息
来源: 评论
Causal Inference for Genomic data with Multiple Heterogeneous Outcomes
arXiv
收藏 引用
arXiv 2024年
作者: Du, Jin-Hong Zeng, Zhenghao Kennedy, Edward H. Wasserman, Larry Roeder, Kathryn Department of Statistics and Data Science Carnegie Mellon University PittsburghPA15213 United States Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States Computational Biology Department Carnegie Mellon University PittsburghPA15213 United States
With the evolution of single-cell RNA sequencing techniques into a standard approach in genomics, it has become possible to conduct cohort-level causal inferences based on single-cell-level measurements. However, the ... 详细信息
来源: 评论
Statistical guarantees for local spectral clustering on random neighborhood graphs
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2021年 第1期22卷 11184-11254页
作者: Alden Green Sivaraman Balakrishnan Ryan J. Tibshirani Department of Statistics and Data Science Carnegie Mellon University Pittsburgh PA Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University Pittsburgh PA
We study the Personalized PageRank (PPR) algorithm, a local spectral method for clustering, which extracts clusters using locally-biased random walks around a given seed node. In contrast to previous work, we adopt a ... 详细信息
来源: 评论
Comparative Analysis of Time Series Forecasting Models for Weather Prediction: ARIMA vs. STL
Comparative Analysis of Time Series Forecasting Models for W...
收藏 引用
International Conference on Computing Communication Control and Automation (ICCUBEA)
作者: Aahash Kamble Sanika Belsare Purva Chaudhari Palash Gourshettiwar Swapnil Gundewar Department of Artificial Intellegence and Data Science Datta Meghe Institute of Higher Education and Research Wardha India Department of Artificial Intellegence and Data Science Datta Meghe Institute of Higher Education and Research(DU) Wardha Maharashtra Department of Computer Science and Medical Engineering Datta Meghe Institute of Higher Education and Research Wardha India Department of Artificial Intellegence and Machine Learning Datta Meghe Institute of Higher Education and Research Wardha India
This research compares two well-known models for predicting weather: ARIMA (Auto Regressive Integrated Moving Average) and STL (Seasonal-Trend Decomposition using Loess). Accurate weather forecasts are crucial for bus... 详细信息
来源: 评论
Introduction to the Special Issue on Causal Inference for Recommender Systems
收藏 引用
ACM Transactions on Recommender Systems 2024年 第2期2卷 1-4页
作者: Yongfeng Zhang Xu Chen Da Xu Tobias Schnabel Department of Computer Science Rutgers University New Brunswick United States Gaoling School of Artificial Intelligence Renmin University of China Beijing China Machine Learning Walmart Labs San Bruno United States Information and Data Sciences Microsoft Research Redmond Redmond United States
A significant proportion of machine learning methodologies for recommendation systems are grounded in the fundamental principle of matching, utilizing perceptual and similarity-based learning approaches. These methods... 详细信息
来源: 评论
Virtual Palette: An Efficient Object Tracking Tool
Virtual Palette: An Efficient Object Tracking Tool
收藏 引用
Sustainable Computing and Smart Systems (ICSCSS), International Conference on
作者: R. Madhura S. Nikkath Bushra Devi P. P Sasigresa P Department of Computing Technologies SRM Institute of Science and Technology Kattangulathur Chennai Tamil Nadu India Department of Artificial Intelligence and Machine Learning Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology Department of Computer Science and Engineering (Data Science) Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology
Virtual Palette is a cutting-edge tool designed to enhance audience participation by providing an alternative to conventional jamboards for educators. Leveraging object tracking, a fundamental component of computer vi... 详细信息
来源: 评论