咨询与建议

限定检索结果

文献类型

  • 494 篇 期刊文献
  • 355 篇 会议
  • 1 册 图书

馆藏范围

  • 850 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 513 篇 工学
    • 347 篇 计算机科学与技术...
    • 301 篇 软件工程
    • 109 篇 生物工程
    • 72 篇 信息与通信工程
    • 68 篇 生物医学工程(可授...
    • 67 篇 控制科学与工程
    • 42 篇 光学工程
    • 42 篇 电气工程
    • 39 篇 安全科学与工程
    • 37 篇 化学工程与技术
    • 34 篇 电子科学与技术(可...
    • 22 篇 机械工程
    • 18 篇 仪器科学与技术
    • 17 篇 建筑学
    • 17 篇 土木工程
  • 393 篇 理学
    • 225 篇 数学
    • 131 篇 统计学(可授理学、...
    • 122 篇 生物学
    • 82 篇 物理学
    • 51 篇 化学
    • 41 篇 系统科学
  • 121 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 55 篇 图书情报与档案管...
    • 38 篇 工商管理
  • 64 篇 医学
    • 51 篇 临床医学
    • 45 篇 基础医学(可授医学...
    • 31 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 21 篇 法学
    • 19 篇 社会学
  • 18 篇 农学
  • 15 篇 经济学
    • 15 篇 应用经济学
  • 6 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 54 篇 machine learning
  • 47 篇 deep learning
  • 44 篇 accuracy
  • 25 篇 convolutional ne...
  • 23 篇 real-time system...
  • 21 篇 reviews
  • 18 篇 medical services
  • 18 篇 decision making
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 17 篇 forecasting
  • 14 篇 artificial intel...
  • 14 篇 diseases
  • 14 篇 machine learning...
  • 13 篇 reinforcement le...
  • 13 篇 support vector m...
  • 13 篇 optimization
  • 12 篇 image segmentati...
  • 12 篇 data models

机构

  • 59 篇 machine learning...
  • 46 篇 department of st...
  • 22 篇 center for data ...
  • 22 篇 munich center fo...
  • 19 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 17 篇 machine learning...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 department of st...
  • 10 篇 department of ar...
  • 9 篇 department of st...
  • 8 篇 machine learning...

作者

  • 62 篇 ramdas aaditya
  • 20 篇 müller klaus-rob...
  • 19 篇 prateek verma
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 17 篇 verma prateek
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 11 篇 montavon grégoir...
  • 11 篇 krahmer felix
  • 10 篇 ravikumar pradee...
  • 10 篇 do thanh-toan
  • 10 篇 wang hongjian
  • 10 篇 abhay tale

语言

  • 707 篇 英文
  • 140 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Machine Learning and Data Science"
850 条 记 录,以下是391-400 订阅
排序:
BGTplanner: Maximizing Training Accuracy for Differentially Private Federated Recommenders via Strategic Privacy Budget Allocation
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Xianzhi Zhou, Yipeng Hu, Miao Wu, Di Liao, Pengshan Guizani, Mohsen Sheng, Michael The School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China The Department of Computing Faculty of Science and Engineering Macquarie University Sydney Australia The Machine Learning Department Mohamed Bin Zayed University of Artificial Intelligence Abu Dhabi United Arab Emirates
To mitigate the rising concern about privacy leakage, the federated recommender (FR) paradigm emerges, in which decentralized clients co-train the recommendation model without exposing their raw user-item rating data.... 详细信息
来源: 评论
Mixing Histopathology Prototypes into Robust Slide-Level Representations for Cancer Subtyping
arXiv
收藏 引用
arXiv 2023年
作者: Butke, Joshua Hashimoto, Noriaki Takeuchi, Ichiro Miyoshi, Hiroaki Ohshima, Koichi Sakuma, Jun Machine Learning and Data Mining Lab University of Tsukuba Japan RIKEN Center for Advanced Intelligence Project Japan Department of Mechanical Systems Engineering Nagoya University Japan Department of Pathology Kurume University Japan Department of Computer Science Tokyo Institute of Technology Japan
Whole-slide image analysis via the means of computational pathology often relies on processing tessellated gigapixel images with only slide-level labels available. Applying multiple instance learning-based methods or ... 详细信息
来源: 评论
Research Highlights (Required) to Create Your Highlights, Please Type the Highlights Against Each /Item Command. /Item Address the Question "When to Adapt" Which is Ignored by Prior Works /Item Show a Correlation between Domain Gap and Detection Accuracy /Item Show Domain Gap Can Help Save Up to About 90% of Total Energy Usage for Continual Domain Adaption Without Sacrificing the Overall Performance of Object Detectors
SSRN
收藏 引用
SSRN 2023年
作者: Doan, Anh-Dzung Nguyen, Bach Long Gupta, Surabhi Reid, Ian Wagner, Markus Chin, Tat-Jun Australian Institute for Machine Learning The University of Adelaide AdelaideSA5000 Australia Department of Data Science and Artificial Intelligence Monash University MelbourneVIC3800 Australia Safran Electronics & Defense Australasia BotanyNSW2019 Australia
To ensure reliable object detection in autonomous systems, the detector must be able to adapt to changes in appearance caused by environmental factors such as time of day, weather, and seasons. Continually adapting th... 详细信息
来源: 评论
Assessing Domain Gap for Continual Domain Adaptation in Object Detection
arXiv
收藏 引用
arXiv 2023年
作者: Doan, Anh-Dzung Nguyen, Bach Long Gupta, Surabhi Reid, Ian Wagner, Markus Chin, Tat-Jun Australian Institute for Machine Learning The University of Adelaide AdelaideSA5000 Australia Department of Data Science and Artificial Intelligence Monash University MelbourneVIC3800 Australia Safran Electronics & Defense Australasia BotanyNSW2019 Australia
To ensure reliable object detection in autonomous systems, the detector must be able to adapt to changes in appearance caused by environmental factors such as time of day, weather, and seasons. Continually adapting th... 详细信息
来源: 评论
Domain Adaptation-Based Deep learning Models for Forecasting and Diagnosis of Glaucoma Disease
TechRxiv
收藏 引用
TechRxiv 2022年
作者: Madadi, Yeganeh Abu-Serhan, Hashem Yousefi, Siamak The Data Mining and Machine Learning Laboratory Department of Ophthalmology University of Tennessee Health Science Center TN United States The Hamad Medical Corporation QA Doha Qatar
Domain adaptation methods are designed to extract shared domain-invariant features by projecting data on a common subspace in order to align their domain distributions. However, these methods do not usually consider d... 详细信息
来源: 评论
SPEAR: Design and Implementation of an Advanced Virtual Assistant
SPEAR: Design and Implementation of an Advanced Virtual Assi...
收藏 引用
Sustainable Expert Systems (ICSES), International Conference on
作者: Garima Jain Amita Shukla Nitesh Kumar Bairwa Anamika Chaudhary Ashish Patel Ankush Jain Department of Computer Science and Buisness Systems Noida Institute of Engineering and Technology Greater Noida India Department of Artificial Intelligence Noida Institute of Engineering and Technology Greater Noida India Department of Data Science Noida Institute of Engineering and Technology Greater Noida India Department of Artificial Intelligence and Machine Learning Dronacharya Group of Institutions Greater Noida India Department of Computer Science and Enginnering Netaji Subhash University of Technology Delhi India
This research presents the development and evaluation of SPEAR, an advanced voice-activated personal desktop assistant designed to address challenges in existing virtual assistant technology, such as limited language ... 详细信息
来源: 评论
SpectralNET: Exploring spatial-spectral WaveletCNN for hyperspectral image classification
arXiv
收藏 引用
arXiv 2021年
作者: Chakraborty, Tanmay Trehan, Utkarsh Zuluaga, Maria A. MALIS - Machine Learning and Intelligent Systems Department of Data Science and Engineering EURECOM Biot France
Hyperspectral Image (HSI) classification using Convolutional Neural Networks (CNN) is widely found in the current literature. Approaches vary from using SVMs to 2D CNNs, 3D CNNs, 3D-2D CNNs. Besides 3D-2D CNNs and FuS... 详细信息
来源: 评论
Pattern Discovery in an EEG database of Depression Patients: Preliminary Results
Pattern Discovery in an EEG Database of Depression Patients:...
收藏 引用
International Conference on Measurement
作者: Kateřina Hlaváčková-Schindler Christina Pacher Claudia Plant Mykola Lazarenko Milan Paluš Jaroslav Hlinka Aditi Kathpalia Martin Brunovský Data Mining and Machine Learning Research Group Faculty of Computer Science University of Vienna Vienna Austria Department of Complex Systems Institute of Computer Science Czech Academy of Sciences Prague Czechia Clinical Research Programme National Institute of Mental Health Klecany Czechia
The ability to predict response to medication treatment of depressed patients, either early in the course of therapy or before treatment even begins can avoid trials of ineffective therapy and save patients from prolo...
来源: 评论
Empowering LLMs with Logical Reasoning: A Comprehensive Survey
arXiv
收藏 引用
arXiv 2025年
作者: Cheng, Fengxiang Li, Haoxuan Liu, Fenrong van Rooij, Robert Zhang, Kun Lin, Zhouchen Institute for Logic Language and Computation University of Amsterdam Netherlands Center for Data Science Peking University China Machine Learning Department MBZUAI Department of Philosophy Tsinghua University China Department of Philosophy CMU United States Institute for Artificial Intelligence Peking University China Peng Cheng Laboratory China National Key Lab of General AI School of Intelligence Science and Technology Peking University China
Large language models (LLMs) have achieved remarkable successes on various natural language tasks. However, recent studies have found that there are still significant challenges to the logical reasoning abilities of L... 详细信息
来源: 评论
Analyzing Atomic Interactions in Molecules as Learned by Neural Networks
arXiv
收藏 引用
arXiv 2024年
作者: Esders, Malte Schnake, Thomas Lederer, Jonas Kabylda, Adil Montavon, Grégoire Tkatchenko, Alexandre Müller, Klaus-Robert BIFOLD Berlin Institute for the Foundations of Learning and Data Germany Machine Learning Group Berlin Institute of Technology Berlin10587 Germany Department of Physics and Materials Science University of Luxembourg Luxembourg CityL-1511 Luxembourg Department of Mathematics and Computer Science Free University of Berlin Germany Google Deepmind Berlin Germany Department of Artificial Intelligence Korea University Seoul136-713 Korea Republic of Max Planck Institute for Informatics Saarbrücken66123 Germany
While machine learning (ML) models have been able to achieve unprecedented accuracies across various prediction tasks in quantum chemistry, it is now apparent that accuracy on a test set alone is not a guarantee for r... 详细信息
来源: 评论