咨询与建议

限定检索结果

文献类型

  • 489 篇 期刊文献
  • 354 篇 会议
  • 1 册 图书

馆藏范围

  • 844 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 509 篇 工学
    • 344 篇 计算机科学与技术...
    • 301 篇 软件工程
    • 108 篇 生物工程
    • 71 篇 信息与通信工程
    • 67 篇 控制科学与工程
    • 67 篇 生物医学工程(可授...
    • 43 篇 光学工程
    • 41 篇 电气工程
    • 39 篇 安全科学与工程
    • 37 篇 化学工程与技术
    • 34 篇 电子科学与技术(可...
    • 21 篇 机械工程
    • 17 篇 仪器科学与技术
    • 17 篇 建筑学
    • 17 篇 土木工程
  • 389 篇 理学
    • 224 篇 数学
    • 130 篇 统计学(可授理学、...
    • 120 篇 生物学
    • 82 篇 物理学
    • 50 篇 化学
    • 41 篇 系统科学
  • 121 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 55 篇 图书情报与档案管...
    • 38 篇 工商管理
  • 64 篇 医学
    • 51 篇 临床医学
    • 46 篇 基础医学(可授医学...
    • 32 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 21 篇 法学
    • 19 篇 社会学
  • 17 篇 农学
  • 15 篇 经济学
    • 15 篇 应用经济学
  • 5 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 53 篇 machine learning
  • 47 篇 deep learning
  • 44 篇 accuracy
  • 24 篇 convolutional ne...
  • 23 篇 real-time system...
  • 21 篇 reviews
  • 18 篇 medical services
  • 18 篇 decision making
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 17 篇 forecasting
  • 14 篇 artificial intel...
  • 14 篇 diseases
  • 14 篇 machine learning...
  • 13 篇 reinforcement le...
  • 13 篇 support vector m...
  • 13 篇 optimization
  • 12 篇 image segmentati...
  • 12 篇 data models

机构

  • 59 篇 machine learning...
  • 46 篇 department of st...
  • 22 篇 center for data ...
  • 22 篇 munich center fo...
  • 19 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 17 篇 machine learning...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 department of st...
  • 10 篇 department of ar...
  • 9 篇 department of st...
  • 8 篇 machine learning...

作者

  • 62 篇 ramdas aaditya
  • 20 篇 müller klaus-rob...
  • 19 篇 prateek verma
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 17 篇 verma prateek
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 11 篇 montavon grégoir...
  • 11 篇 krahmer felix
  • 10 篇 ravikumar pradee...
  • 10 篇 do thanh-toan
  • 10 篇 wang hongjian
  • 10 篇 abhay tale

语言

  • 706 篇 英文
  • 135 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Machine Learning and Data Science"
844 条 记 录,以下是521-530 订阅
排序:
A Review of machine learning Algorithms in Diabetes Management
A Review of Machine Learning Algorithms in Diabetes Manageme...
收藏 引用
Sentiment Analysis and Deep learning (ICSADL), International Conference on
作者: Unnati Gayaki Subodh Daronde Abhay Tale Aditya Barhate Department of Computer Science and Engineering Faculty of Engineering and Technology Datta Meghe Institute of Higher Education and Research Wardha Maharashtra India Department of Biomedical Engineering Faculty of Engineering and Technology Datta Meghe Institute of Higher Education and Research (Deemed to be University)) Wardha Maharashtra India Department of Artificial Intelligence and Data Science Faculty of Engineering and Technology Datta Meghe Institute of Higher Education and Research Wardha Maharashtra India Department of Artificial Intelligence and Machine Learning Faculty of Engineering and Technology Datta Meghe Institute of Higher Education and Research Wardha Maharashtra India
Diabetes is a prevalent and chronic disease affecting millions worldwide, posing significant challenges in its management and treatment. This review article aims to explore the current and potential future roles of ma... 详细信息
来源: 评论
Preemptively Pruning Clever-Hans Strategies in Deep Neural Networks
arXiv
收藏 引用
arXiv 2023年
作者: Linhardt, Lorenz Müller, Klaus-Robert Montavon, Grégoire Machine Learning Group Technische Universität Berlin Berlin10587 Germany Berlin Institute for the Foundations of Learning and Data - BIFOLD Berlin10587 Germany Department of Artificial Intelligence Korea University Seoul136-713 Korea Republic of Max Planck Institute for Informatics Saarbrücken66123 Germany Google DeepMind Berlin Germany Department of Mathematics and Computer Science Freie Universität Berlin Berlin14195 Germany
Robustness has become an important consideration in deep learning. With the help of explainable AI, mismatches between an explained model's decision strategy and the user's domain knowledge (e.g. Clever Hans e... 详细信息
来源: 评论
A Review on Soil Moisture Monitoring Methods using Satellite Images
A Review on Soil Moisture Monitoring Methods using Satellite...
收藏 引用
Artificial Intelligence in Education and Industry 4.0 (IDICAIEI), DMIHER International Conference on
作者: Prateek Verma Aahash Kamble Aditya Barhate Abhay Tale Amit Gudadhe Department of Artificial Intelligence and Machine Learning Faculty of Engineering & Technology Datta Meghe Institute of Higher Education & Research Wardha Maharashtra India Department of Artificial Intelligence and Data Science Faculty of Engineering & Technology Datta Meghe Institute of Higher Education & Research Wardha Maharashtra India Department of Basic Sciences and Humanities Faculty of Engineering & Technology Datta Meghe Institute of Higher Education & Research Sawangi (Meghe) Wardha Maharashtra India
Soil moisture is an important parameter in the hydrological cycle and an important component for agricultural production and prediction. The regular monitoring of soil moisture plays a big role in the prediction and m... 详细信息
来源: 评论
Homotopy reconstruction via the CecH complex and the vietoris-rips complex  36
Homotopy reconstruction via the CecH complex and the vietori...
收藏 引用
36th International Symposium on Computational Geometry, SoCG 2020
作者: Kim, Jisu Shin, Jaehyeok Chazal, Frédéric Rinaldo, Alessandro Wasserman, Larry Inria Saclay - Île-de-France Palaiseau France Department of Statistics and Data Science Carnegie Mellon University PittsburghPA United States Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University PittsburghPA United States
We derive conditions under which the reconstruction of a target space is topologically correct via the Čech complex or the Vietoris-Rips complex obtained from possibly noisy point cloud data. We provide two novel theo... 详细信息
来源: 评论
Label Refinement Network from Synthetic Error Augmentation for Medical Image Segmentation
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Shuai Garcia-Uceda, Antonio Su, Jiahang Van Tulder, Gijs Wolff, Lennard Van Walsum, Theo De Bruijne, Marleen The Biomedical Imaging Group Rotterdam Department of Radiology & Nuclear Medicine Erasmus Mc Rotterdam Netherlands The Data Science Group Faculty of Science Radboud University Nijmegen Netherlands Department of Radiology & Nuclear Medicine Erasmus Mc Rotterdam Netherlands The Machine Learning Section Department of Computer Science University of Copenhagen CopenhagenDK-2110 Denmark
Deep convolutional neural networks for image segmentation do not learn the label structure explicitly and may produce segmentations with an incorrect structure, e.g., with disconnected cylindrical structures in the se... 详细信息
来源: 评论
Bringing closure to FDR control: beating the e-Benjamini-Hochberg procedure
arXiv
收藏 引用
arXiv 2025年
作者: Xu, Ziyu Fischer, Lasse Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Competence Center for Clinical Trials Bremen University of Bremen Germany Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University United States
False discovery rate (FDR) has been a key metric for error control in multiple hypothesis testing, and many methods have developed for FDR control across a diverse cross-section of settings and applications. We develo...
来源: 评论
Traffic4cast at NeurIPS 2022 – Predict Dynamics along Graph Edges from Sparse Node data: Whole City Traffic and ETA from Stationary Vehicle Detectors  36
Traffic4cast at NeurIPS 2022 – Predict Dynamics along Graph...
收藏 引用
36th Annual Conference on Neural Information Processing Systems - Competition Track, NeurIPS 2022
作者: Neun, Moritz Eichenberger, Christian Martin, Henry Spanring, Markus Siripurapu, Rahul Springer, Daniel Deng, Leyan Wu, Chenwang Lian, Defu Zhou, Min Lumiste, Martin Ilie, Andrei Wu, Xinhua Lyu, Cheng Lu, Qing-Long Mahajan, Vishal Lu, Yichao Li, Jiezhang Li, Junjun Gong, Yue-Jiao Grötschla, Florian Mathys, Joël Wei, Ye Haitao, He Fang, Hui Malm, Kevin Tang, Fei Kopp, Michael Kreil, David Hochreiter, Sepp Vienna Austria Institute of Cartography and Geoinformation ETH Zurich Switzerland School of Data Science University of Science and Technology of China China Huawei Noah’s Ark Lab. China Bolt Technology Tallinn Estonia University of Bucharest Bucharest Romania Department of Civil and Environmental Engineering Northeastern University BostonMA United States Technical University of Munich Germany Layer 6 AI Toronto Canada School of Coumpute Science and Engineering South China University of Technology Guangzhou China ETH Zurich Switzerland Department of Computer Science Loughborough University Loughborough United Kingdom School of Architecture Building and Civil Engineering Loughborough University Loughborough United Kingdom HERE Technologies ChicagoIL United States Kaiko Zurich Switzerland Machine Learning Institute Johannes Kepler University Linz Austria
The global trends of urbanization and increased personal mobility force us to rethink the way we live and use urban space. The Traffic4cast competition series tackles this problem in a data-driven way, advancing the l... 详细信息
来源: 评论
Likelihood-Free Frequentist Inference: Bridging Classical Statistics and machine learning for Reliable Simulator-Based Inference∗
arXiv
收藏 引用
arXiv 2021年
作者: Dalmasso, Niccolò Masserano, Luca Zhao, David Izbicki, Rafael Lee, Ann B. Department of Statistics and Data Science Carnegie Mellon University United States Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University United States Department of Statistics Federal University of São Carlos Brazil
Many areas of science rely on simulators that implicitly encode intractable likelihood functions of complex systems. Classical statistical methods are poorly suited for these so-called likelihood-free inference (LFI) ... 详细信息
来源: 评论
Large language models:game-changers in the healthcare industry
收藏 引用
science Bulletin 2025年 第3期70卷 283-286页
作者: Bin Dong Li Zhang Jiajia Yuan Yang Chen Quanzheng Li Lin Shen Beijing International Center for Mathematical Research Peking UniversityBeijing 100871China Center for Machine Learning Research Peking UniversityBeijing 100871China Peking University Changsha Institute for Computing and Digital Economy Changsha 410205China Center for Data Science Peking UniversityBeijing 100871China Department of Gastrointestinal Oncology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education/Beijing)Peking University Cancer Hospital and InstituteBeijing 100142China Massachusetts General Hospital Boston 02114-2696USA Harvard Medical School Boston 02115USA
The healthcare industry faces core challenges,including increasingly complex operational processes and entities,the rapid development of medical knowledge,and the rising demand for interdisciplinary *** complexity of ... 详细信息
来源: 评论
Innovative Healthcare Advancements: Harnessing Artificial and Human Intelligence for Bionic Solutions
Innovative Healthcare Advancements: Harnessing Artificial an...
收藏 引用
Emerging Trends in Industry 4.0 (ETI 4.0)
作者: Samruddhi Sapkal Sulaxan Jadhav P Mallikarjun Rejuwan Shamim Atowar Ul Islam Kalyan Bamane Artificial Intelligence and Machine Learning D Y Patil International University Akurdi Pune India D Y Patil International University Akurdi Pune India Department of Electrical and Electronic Engineering Malla Reddy Engineering College JNTUH Hyderabad School of data science Maharishi University of Information Technology Noida India Department of Computer Science and Electronics University of Science and Technology Meghalaya Ri-Bhoi Techno city Kiling Road Baridua Meghalaya Department of Information Technology D Y Patil College of Engineering Akurdi Pune
According to initial data, individuals who have been diagnosed with type 2 diabetes (T2DM) appear to be at a more chances of evolving breast cancer compared to those who have not received a T2DM diagnosis. The primary... 详细信息
来源: 评论