咨询与建议

限定检索结果

文献类型

  • 489 篇 期刊文献
  • 354 篇 会议
  • 1 册 图书

馆藏范围

  • 844 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 509 篇 工学
    • 344 篇 计算机科学与技术...
    • 301 篇 软件工程
    • 108 篇 生物工程
    • 71 篇 信息与通信工程
    • 67 篇 控制科学与工程
    • 67 篇 生物医学工程(可授...
    • 43 篇 光学工程
    • 41 篇 电气工程
    • 39 篇 安全科学与工程
    • 37 篇 化学工程与技术
    • 34 篇 电子科学与技术(可...
    • 21 篇 机械工程
    • 17 篇 仪器科学与技术
    • 17 篇 建筑学
    • 17 篇 土木工程
  • 389 篇 理学
    • 224 篇 数学
    • 130 篇 统计学(可授理学、...
    • 120 篇 生物学
    • 82 篇 物理学
    • 50 篇 化学
    • 41 篇 系统科学
  • 121 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 55 篇 图书情报与档案管...
    • 38 篇 工商管理
  • 64 篇 医学
    • 51 篇 临床医学
    • 46 篇 基础医学(可授医学...
    • 32 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 21 篇 法学
    • 19 篇 社会学
  • 17 篇 农学
  • 15 篇 经济学
    • 15 篇 应用经济学
  • 5 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 53 篇 machine learning
  • 47 篇 deep learning
  • 44 篇 accuracy
  • 24 篇 convolutional ne...
  • 23 篇 real-time system...
  • 21 篇 reviews
  • 18 篇 medical services
  • 18 篇 decision making
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 17 篇 forecasting
  • 14 篇 artificial intel...
  • 14 篇 diseases
  • 14 篇 machine learning...
  • 13 篇 reinforcement le...
  • 13 篇 support vector m...
  • 13 篇 optimization
  • 12 篇 image segmentati...
  • 12 篇 data models

机构

  • 59 篇 machine learning...
  • 46 篇 department of st...
  • 22 篇 center for data ...
  • 22 篇 munich center fo...
  • 19 篇 machine learning...
  • 19 篇 center for machi...
  • 18 篇 department of st...
  • 17 篇 machine learning...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 department of st...
  • 10 篇 department of ar...
  • 9 篇 department of st...
  • 8 篇 machine learning...

作者

  • 62 篇 ramdas aaditya
  • 20 篇 müller klaus-rob...
  • 19 篇 prateek verma
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 17 篇 verma prateek
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 11 篇 montavon grégoir...
  • 11 篇 krahmer felix
  • 10 篇 ravikumar pradee...
  • 10 篇 do thanh-toan
  • 10 篇 wang hongjian
  • 10 篇 abhay tale

语言

  • 706 篇 英文
  • 135 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Machine Learning and Data Science"
844 条 记 录,以下是541-550 订阅
排序:
Rejoinder
收藏 引用
Quarterly Publications of the American Statistical Association 2025年 第549期120卷
作者: James Leiner Boyan Duan Larry Wasserman Aaditya Ramdas a Department of Statistics and Data Science Carnegie Mellon University Pittsburgh PA c Google Mountain View CA a Department of Statistics and Data Science Carnegie Mellon University Pittsburgh PAb Machine Learning Department Carnegie Mellon University Pittsburgh PA
来源: 评论
From Pixels to Histopathology: A Graph-Based Framework for Interpretable Whole Slide Image Analysis
arXiv
收藏 引用
arXiv 2025年
作者: Weers, Alexander Berger, Alexander H. Lux, Laurin Schüffler, Peter Rueckert, Daniel Paetzold, Johannes C. School of Computation Information and Technology Technical University of Munich Germany Department of Computing Imperial College London United Kingdom Munich Center of Machine Learning Germany Munich Data Science Institute Technical University of Munich Munich Germany Institute of Pathology TUM School of Medicine and Health Technical University of Munich Munich Germany Weill Cornell Medicine Cornell University New York CityNY United States
The histopathological classification of whole-slide images (WSIs) is a fundamental task in digital pathology;yet it requires extensive time and expertise from specialists. While deep learning methods show promising re... 详细信息
来源: 评论
Condition Monitoring and Fault Diagnosis of BLDC Motor in Electric Vehicles Using Artificial Intelligence
Condition Monitoring and Fault Diagnosis of BLDC Motor in El...
收藏 引用
Artificial Intelligence in Education and Industry 4.0 (IDICAIEI), DMIHER International Conference on
作者: Swapnil Gundewar Meher Langote Swapna Kamble Prashant Kamble Artificial Intelligence and Machine Learning Faculty of Engineering and Technology Datta Meghe Institute of Higher Education and Research Sawangi Maharashtra India Artificial Intelligence and Data Science Faculty of Engineering and Technology Datta Meghe Institute of Higher Education and Research Sawangi Maharashtra India Department of Information Technology Yeshwantrao Chavan College of Engineering Nagpur Maharashtra India Department of Mechanical Technology Yeshwantrao Chavan College of Engineering Nagpur Maharashtra India
Due to their high benefits in terms of environment and standards of battery advancement, Electric Vehicles (EVs) are extremely important in the shift towards transportation. Here the Brushless DC (BLDC) motor is an in... 详细信息
来源: 评论
An Enhanced Traffic Incident Detection using Factor Analysis and Weighted Random Forest Algorithm
An Enhanced Traffic Incident Detection using Factor Analysis...
收藏 引用
IoT Based Control Networks and Intelligent Systems (ICICNIS), International Conference on
作者: P. Rajesh Kanna S. Vanithamani P. Karunakaran P. Pandiaraja N. Tamilarasi P. Nithin Department of Computer Science and Engineering Bannari Amman Institute of Technology Erode Tamil Nadu India Department of Master of Computer Applications M. Kumarasamy College of Engineering Karur Tamil Nadu India Department of Artificial Intelligence and Data Science Nandha Engineering College Erode Tamil Nadu India Department of Computer Science and Engineering Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology Chennai Tamil Nadu India Department of Electronics and Communication Engineering Nehru Institute of Technology Coimbatore Tamil Nadu India Department of Artificial Intelligence and Machine Learning Bannari Amman Institute of Technology Erode Tamil Nadu India
Efficient and precise traffic incident detection is essential to reduce casualties and property damage. To address the issue of unbalanced event data, this work offers a novel methodology known as FA-WRF (Factor Analy... 详细信息
来源: 评论
Recalibrating probabilistic forecasts of epidemics
arXiv
收藏 引用
arXiv 2021年
作者: Rumack, Aaron Tibshirani, Ryan J. Rosenfeld, Roni Machine Learning Department Carnegie Mellon University PittsburghPA United States Department of Statistics & Data Science Carnegie Mellon University PittsburghPA United States
Distributional forecasts are important for a wide variety of applications, including forecasting epidemics. Often, forecasts are miscalibrated, or unreliable in assigning uncertainty to future events. We present a rec... 详细信息
来源: 评论
PLUGIN ESTIMATION OF SMOOTH OPTIMAL TRANSPORT MAPS
arXiv
收藏 引用
arXiv 2021年
作者: Manole, Tudor Balakrishnan, Sivaraman Niles-Weed, Jonathan Wasserman, Larry Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States Courant Institute of Mathematical Sciences Center for Data Science New York University United States
We analyze a number of natural estimators for the optimal transport map between two distributions and show that they are minimax optimal. We adopt the plugin approach: our estimators are simply optimal couplings betwe... 详细信息
来源: 评论
Best arm identification under additive transfer bandits
arXiv
收藏 引用
arXiv 2021年
作者: Neopane, Ojash Ramdas, Aaditya Singh, Aarti Machine Learning Department Carnegie Mellon University PittsburghPA United States Department of Statistics and Data Science Carnegie Mellon University PittsburghPA United States
We consider a variant of the best arm identification (BAI) problem in multi-armed bandits (MAB) in which there are two sets of arms (source and target), and the objective is to determine the best target arm while only... 详细信息
来源: 评论
Adaptive hybrid density functionals
arXiv
收藏 引用
arXiv 2024年
作者: Khan, Danish Price, Alastair James Arthur Ach, Maximilian L. von Lilienfeld, O. Anatole Trottier, Olivier Chemical Physics Theory Group Department of Chemistry University of Toronto St. George Campus TorontoON Canada Vector Institute for Artificial Intelligence TorontoON Canada Acceleration Consortium University of Toronto TorontoON Canada Department of Physics University of Toronto St. George Campus TorontoON Canada Department of Physics Ludwig-Maximilians-Universität Munich Germany Department of Materials Science and Engineering University of Toronto St. George Campus TorontoON Canada Machine Learning Group Technische Universität Berlin Berlin10587 Germany Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
Exact exchange and correlation contributions are known to crucially affect electronic states, which in turn govern covalent bond formation and breaking in chemical species. Empirically averaging the exact exchange adm... 详细信息
来源: 评论
Optical Character Recognition (OCR) in Handwritten Characters Using Convolutional Neural Networks to Assist in Exam Reader System
Optical Character Recognition (OCR) in Handwritten Character...
收藏 引用
Advancement in Computation & Computer Technologies (InCACCT), International Conference on
作者: P L Lekshmy S. Velmurugan Indra Kumari S. Kayalvili B. Teja Sree P. Karthik Kumar Department of Computer Science and Engineering LBS Institute of Technology for Women Kerala India Department of Electronics and Communication Engineering T.J.S. Engineering College Chennai Tamil Nadu India Department of Machine Learning Data Research Applied AI Korea National University of Science and Technology (UST) Daejeon South Korea Department of Artificial Intelligence Kongu Engineering College (Autonomous) Erode Tamilnadu India Department of Information Technology S.R.K.R. Engineering College Chinaamiram Bhimavaram Andhra Pradesh India Department of Computer Science and Engineering (Cyber Security) Karpagam College of Engineering Coimbatore India
This work aimed to develop a character recognition method to facilitate the correction of answer cards in the Multiprova software through the development of a response card analysis flow that would culminate in the re... 详细信息
来源: 评论
Universal inference meets random projections: a scalable test for log-concavity
arXiv
收藏 引用
arXiv 2021年
作者: Dunn, Robin Gangrade, Aditya Wasserman, Larry Ramdas, Aaditya Advanced Methodology and Data Science Novartis Pharmaceuticals Corporation Electrical Engineering and Computer Science University of Michigan Department of Electrical & Computer Engineering Boston University United States Department of Statistics & Data Science Machine Learning Department Carnegie Mellon University United States
Shape constraints yield flexible middle grounds between fully nonparametric and fully parametric approaches to modeling distributions of data. The specific assumption of log-concavity is motivated by applications acro... 详细信息
来源: 评论