咨询与建议

限定检索结果

文献类型

  • 491 篇 期刊文献
  • 349 篇 会议
  • 1 册 图书

馆藏范围

  • 841 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 506 篇 工学
    • 344 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 106 篇 生物工程
    • 71 篇 信息与通信工程
    • 67 篇 控制科学与工程
    • 64 篇 生物医学工程(可授...
    • 42 篇 光学工程
    • 40 篇 电气工程
    • 39 篇 安全科学与工程
    • 37 篇 化学工程与技术
    • 34 篇 电子科学与技术(可...
    • 23 篇 机械工程
    • 18 篇 仪器科学与技术
    • 18 篇 建筑学
    • 18 篇 土木工程
  • 385 篇 理学
    • 222 篇 数学
    • 130 篇 统计学(可授理学、...
    • 120 篇 生物学
    • 79 篇 物理学
    • 48 篇 化学
    • 39 篇 系统科学
  • 121 篇 管理学
    • 67 篇 管理科学与工程(可...
    • 55 篇 图书情报与档案管...
    • 38 篇 工商管理
  • 58 篇 医学
    • 46 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 28 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 22 篇 法学
    • 20 篇 社会学
  • 18 篇 农学
  • 16 篇 经济学
    • 16 篇 应用经济学
  • 5 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 53 篇 machine learning
  • 47 篇 deep learning
  • 43 篇 accuracy
  • 25 篇 convolutional ne...
  • 23 篇 real-time system...
  • 21 篇 reviews
  • 18 篇 decision making
  • 18 篇 training
  • 17 篇 medical services
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 17 篇 forecasting
  • 14 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 reinforcement le...
  • 13 篇 support vector m...
  • 13 篇 optimization
  • 13 篇 machine learning...
  • 12 篇 data models
  • 11 篇 scalability

机构

  • 58 篇 machine learning...
  • 46 篇 department of st...
  • 22 篇 munich center fo...
  • 21 篇 center for data ...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 center for machi...
  • 17 篇 machine learning...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 department of st...
  • 10 篇 department of ar...
  • 9 篇 department of st...
  • 8 篇 machine learning...

作者

  • 61 篇 ramdas aaditya
  • 21 篇 müller klaus-rob...
  • 19 篇 prateek verma
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 17 篇 verma prateek
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 montavon grégoir...
  • 11 篇 krahmer felix
  • 10 篇 ravikumar pradee...
  • 10 篇 do thanh-toan
  • 10 篇 wang hongjian
  • 10 篇 abhay tale

语言

  • 749 篇 英文
  • 89 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Machine Learning and Data Science"
841 条 记 录,以下是641-650 订阅
排序:
Overview of the Tenth Dialog System Technology Challenge: DSTC10
收藏 引用
IEEE/ACM Transactions on Audio Speech and Language Processing 2024年 32卷 765-778页
作者: Yoshino, Koichiro Chen, Yun-Nung Crook, Paul Kottur, Satwik Li, Jinchao Hedayatnia, Behnam Moon, Seungwhan Fei, Zhengcong Li, Zekang Zhang, Jinchao Feng, Yang Zhou, Jie Kim, Seokhwan Liu, Yang Jin, Di Papangelis, Alexandros Gopalakrishnan, Karthik Hakkani-Tur, Dilek Damavandi, Babak Geramifard, Alborz Hori, Chiori Shah, Ankit Zhang, Chen Li, Haizhou Sedoc, Joao D'haro, Luis F. Banchs, Rafael Rudnicky, Alexander Guardian Robot Project R-IH RIKEN 2-2-2 Hikaridai Seika Shoraku619-0288 Japan Information Science Nara Institute of Science and Technology Ikoma630-0101 Japan Computer Science and Information Engineering National Taiwan University Taipei10617 Taiwan Inc. Palo AltoCA95054 United States Alexa AI *** Inc. SunnyvaleCA94089 United States Meta Seattle RedmondWA98052 United States Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Tencent AI Lab Beijing Beijing China Kexueyuan South Road Zhongguancun Beijing100190 China Beijing 100190 China Alexa AI *** Inc. SunnyvaleCA United States 1120 Enterprise way Sunnyvale94089 United States *** Inc. SeattleWA United States Menlo Park CA United States Audio and Speech Group Mitsubishi Electric Research Laboratories CambridgeMA02139-1955 United States Carnegie Mellon University Department of Language and Information Technologies or just Carnegie Mellon University Pittsburgh United States National University of Singapore Singapore Singapore Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore Shenzhen Research Institute of Big Data School of Data Science Chinese University of Hong Kong Shenzhen518172 China New York University New YorkNY United States ETSI de Telecomunicacion - Speech Technology and Machine Learning Group Universidad Politecnica de Madrid Ciudad Universitaria Madrid28040 Spain Nanyang Technological University Singapore Singapore Carnegie Mellon University PittsburghPA United States
This article introduces the Tenth Dialog System Technology Challenge (DSTC-10). This edition of the DSTC focuses on applying end-to-end dialog technologies for five distinct tasks in dialog systems, namely 1. Incorpor... 详细信息
来源: 评论
Understanding telecom customer churn with machine learning: From prediction to causal inference  31st
Understanding telecom customer churn with machine learning: ...
收藏 引用
31st Benelux Conference on Artificial Intelligence and the 28th Belgian Dutch Conference on machine learning, BNAIC/BENELEARN 2019
作者: Verhelst, Théo Caelen, Olivier Dewitte, Jean-Christophe Lebichot, Bertrand Bontempi, Gianluca Machine Learning Group Computer Science Department Université Libre de Bruxelles Brussels Belgium Data Science Team Orange Belgium
Telecommunication companies are evolving in a highly competitive market where attracting new customers is much more expensive than retaining existing ones. Though retention campaigns may be used to prevent customer ch... 详细信息
来源: 评论
Florid – a Nationwide Identification Service for Plants from Photos and Habitat Information
SSRN
收藏 引用
SSRN 2024年
作者: Brun, Philipp de Witte, Lucienne Popp, Manuel Richard Zurell, Damaris Karger, Dirk Nikolaus Descombes, Patrice de Lutio, Riccardo Wegner, Jan Dirk Bornand, Christophe Eggenberg, Stefan Olevski, Tasko Zimmermann, Niklaus E. Swiss Federal Research Institute WSL Birmensdorf8903 Switzerland Musée et jardins botaniques cantonaux Lausanne1007 Switzerland Institute of Biochemistry and Biology University of Potsdam Potsdam14469 Germany EcoVision Lab Photogrammetry and Remote Sensing ETH Zurich Zürich8092 Switzerland Department of Mathematical Modeling and Machine Learning University of Zurich Zürich8057 Switzerland InfoFlora Switzerland Bern3013 Switzerland Swiss Data Science Center ETH Zurich Zürich8092 Switzerland University of Basel Switzerland
Citizen science has become key to biodiversity monitoring but critically depends on accurate quality control that is scalable and tailored to the focal region. We developed FlorID, a free-to-use identification service... 详细信息
来源: 评论
Capsule Vision 2024 Challenge: Multi-Class Abnormality Classification for Video Capsule Endoscopy
arXiv
收藏 引用
arXiv 2024年
作者: Handa, Palak Mahbod, Amirreza Schwarzhans, Florian Woitek, Ramona Goel, Nidhi Dhir, Manas Chhabra, Deepti Jha, Shreshtha Sharma, Pallavi Thakur, Vijay Chawla, Simarpreet Singh Gunjan, Deepak Kakarla, Jagadeesh Raman, Balasubramanian Research Center for Medical Image Analysis and Artificial Intelligence Department of Medicine Danube Private University Krems Austria Department of Electronics and Communication Engineering Indira Gandhi Delhi Technical University for Women Delhi India Department of Artificial Intelligence and Data Sciences Indira Gandhi Delhi Technical University for Women Delhi India Department of Artificial Intelligence and Machine Learning University School of Automation and Robotics Guru Gobind Singh Indraprastha University Delhi India Department of Electronics and Communication Engineering Delhi Technological University Delhi India Columbia University New YorkNY United States Department of Gastroenterology and HNU All India Institute of Medical Sciences Delhi India Chennai Kancheepuram India Department of Computer Science and Engineering Indian Institute of Technology Roorkee India
We present the Capsule Vision 2024 Challenge: Multi-Class Abnormality Classification for Video Capsule Endoscopy. It was virtually organized by the Research Center for Medical Image Analysis and Artificial Intelligenc... 详细信息
来源: 评论
TEEM: Two-Factor Energy Evaluation Metric Toward Green Big data System
TEEM: Two-Factor Energy Evaluation Metric Toward Green Big D...
收藏 引用
IEEE Conference on Global Communications (GLOBECOM)
作者: Weidong Fang Chunsheng Zhu Mohsen Guizani Zhiqi Li Wuxiong Zhang Joel J.P.C. Rodrigues Science and Technology on Micro-system Laboratory Shanghai Institute of Micro-system and Information Technology Chinese Academy of Sciences Shanghai China University of Chinese Academy of Sciences Beijing China Shanghai Research and Development Center for Micro-Nano Electronics Shanghai China College of Big Data and Internet Shenzhen Technology University Shenzhen China Machine Learning Department Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI) UAE COPELABS Lusófona University Lisbon Portugal
Toward green Big data System (BDS), one of the key requirements is to save energy consumption so that the system lifetime can be prolonged. Hence, the energy evaluation metric for the measurement of energy efficiency ...
来源: 评论
Effective resampling approach for skewed distribution on imbalanced data set
IAENG International Journal of Computer Science
收藏 引用
IAENG International Journal of Computer science 2020年 第2期47卷 234-249页
作者: Nwe, Mar Mar Lynn, Khin Thidar Data Mining and Machine Learning Lab University of Computer Studies Mandalay Myanmar Faculty of Information Science Department University of Computer Studies Mandalay Myanmar
Accurate classification of unknown input data for imbalanced data sets is difficult, because the predictions of learning classifiers tend to be biased towards the majority class and ignore the minority class. Moreover... 详细信息
来源: 评论
Computationally Efficient Approximations for Matrix-based Rényi's Entropy
arXiv
收藏 引用
arXiv 2021年
作者: Gong, Tieliang Dong, Yuxin Yu, Shujian Dong, Bo The School of Computer Science and Technology Xi'an Jiaotong University Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering Xi’an710049 China The Machine Learning Group UiT - The Arctic University of Norway Department of Computer Science Vrije University Amsterdam Amsterdam Netherlands
The recently developed matrix-based Rényi's αorder entropy enables measurement of information in data simply using the eigenspectrum of symmetric positive semi-definite (PSD) matrices in reproducing kernel H... 详细信息
来源: 评论
Distribution-free binary classification: Prediction sets, confidence intervals and calibration
arXiv
收藏 引用
arXiv 2020年
作者: Gupta, Chirag Podkopaev, Aleksandr Ramdas, Aaditya Machine Learning Department Carnegie Mellon University United States Department of Statistics and Data Science Carnegie Mellon University United States
We study three notions of uncertainty quantification-calibration, confidence intervals and prediction sets-for binary classification in the distribution-free setting, that is without making any distributional assumpti... 详细信息
来源: 评论
On conditional versus marginal bias in multi-armed bandits
arXiv
收藏 引用
arXiv 2020年
作者: Shin, Jaehyeok Rinaldo, Alessandro Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
The bias of the sample means of the arms in multiarmed bandits is an important issue in adaptive data analysis that has recently received considerable attention in the literature. Existing results relate in precise wa... 详细信息
来源: 评论
machine learning to detect recent recreational drug use in intensive cardiac care units
收藏 引用
Archives of Cardiovascular Diseases 2025年 第5期118卷 277-286页
作者: El Bèze, Nathan Hamzi, Kenza Henry, Patrick Trimaille, Antonin El Ouahidi, Amine Zakine, Cyril Nallet, Olivier Delmas, Clément Aboyans, Victor Goralski, Marc Albert, Franck Bonnefoy-Cudraz, Eric Bochaton, Thomas Schurtz, Guillaume Lim, Pascal Lequipar, Antoine Gonçalves, Trecy Gall, Emmanuel Pommier, Thibaut Lemarchand, Léo Meune, Christophe Azzakani, Sonia Bouleti, Claire Amar, Jonas Dillinger, Jean-Guillaume Steg, P. Gabriel Vicaut, Eric Toupin, Solenn Pezel, Théo Inserm MASCOT – UMRS 942 Department of Cardiology University Hospital of Lariboisière Université Paris-Cité AP–HP Paris 75010 France Multimodality Imaging Research for Analysis Core Laboratory: Artificial Intelligence (MIRACL.ai) Department of Data Science Machine Learning and Artificial Intelligence in Health University Hospital of Lariboisière AP–HP Paris 75010 France Department of Cardiovascular Medicine Nouvel Hôpital Civil Strasbourg University Hospital Strasbourg 67000 France Department of Cardiology University Hospital of Brest Brest 29609 France NCT+ Saint-Cyr-sur-Loire 37540 France Department of Cardiology Hôpital Montfermeil Montfermeil 93370 France Department of Cardiology Rangueil University Hospital Toulouse 31000 France Department of Cardiology University Hospital of Limoges Limoges 87000 France Department of Cardiology Centre Hospitalier d'Orléans Orléans 45100 France Department of Cardiology Centre Hospitalier de Chartres Le Coudray 28630 France Intensive Cardiological Care Division Louis-Pradel Hospital Hospices Civils de Lyon Bron 69500 France Department of Cardiology University Hospital of Lille Lille 59000 France Intensive Cardiac Care Unit Henri-Mondor University Hospital Créteil 94000 France Department of Cardiology Dijon University Hospital Dijon 21000 France Department of Cardiology and Vascular Diseases CHU of Rennes Rennes 35000 France Department of Cardiology Hôpital Avicenne AP–HP Bobigny 93000 France Department of Cardiology Clinical Investigation Centre (Inserm 1204) University Hospital of Poitiers Poitiers 86000 France Inserm_U1148/LVTS hôpital Bichat université Paris-Cité AP–HP Paris 75877 France Unité de recherche clinique hôpital Fernand-Widal AP–HP Paris 75010 France
Background: Although recreational drug use is a strong risk factor for acute cardiovascular events, systematic testing is currently not performed in patients admitted to intensive cardiac care units, with a risk of un... 详细信息
来源: 评论