咨询与建议

限定检索结果

文献类型

  • 491 篇 期刊文献
  • 349 篇 会议
  • 1 册 图书

馆藏范围

  • 841 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 506 篇 工学
    • 344 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 106 篇 生物工程
    • 71 篇 信息与通信工程
    • 67 篇 控制科学与工程
    • 64 篇 生物医学工程(可授...
    • 42 篇 光学工程
    • 40 篇 电气工程
    • 39 篇 安全科学与工程
    • 37 篇 化学工程与技术
    • 34 篇 电子科学与技术(可...
    • 23 篇 机械工程
    • 18 篇 仪器科学与技术
    • 18 篇 建筑学
    • 18 篇 土木工程
  • 385 篇 理学
    • 222 篇 数学
    • 130 篇 统计学(可授理学、...
    • 120 篇 生物学
    • 79 篇 物理学
    • 48 篇 化学
    • 39 篇 系统科学
  • 121 篇 管理学
    • 67 篇 管理科学与工程(可...
    • 55 篇 图书情报与档案管...
    • 38 篇 工商管理
  • 58 篇 医学
    • 46 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 28 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 22 篇 法学
    • 20 篇 社会学
  • 18 篇 农学
  • 16 篇 经济学
    • 16 篇 应用经济学
  • 5 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 53 篇 machine learning
  • 47 篇 deep learning
  • 43 篇 accuracy
  • 25 篇 convolutional ne...
  • 23 篇 real-time system...
  • 21 篇 reviews
  • 18 篇 decision making
  • 18 篇 training
  • 17 篇 medical services
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 17 篇 forecasting
  • 14 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 reinforcement le...
  • 13 篇 support vector m...
  • 13 篇 optimization
  • 13 篇 machine learning...
  • 12 篇 data models
  • 11 篇 scalability

机构

  • 58 篇 machine learning...
  • 46 篇 department of st...
  • 22 篇 munich center fo...
  • 21 篇 center for data ...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 center for machi...
  • 17 篇 machine learning...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 department of st...
  • 10 篇 department of ar...
  • 9 篇 department of st...
  • 8 篇 machine learning...

作者

  • 61 篇 ramdas aaditya
  • 21 篇 müller klaus-rob...
  • 19 篇 prateek verma
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 17 篇 verma prateek
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 montavon grégoir...
  • 11 篇 krahmer felix
  • 10 篇 ravikumar pradee...
  • 10 篇 do thanh-toan
  • 10 篇 wang hongjian
  • 10 篇 abhay tale

语言

  • 749 篇 英文
  • 89 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Machine Learning and Data Science"
841 条 记 录,以下是651-660 订阅
排序:
On the power of conditional independence testing under model-X
arXiv
收藏 引用
arXiv 2020年
作者: Katsevich, Eugene Ramdas, Aaditya Department of Statistics and Data Science University of Pennsylvania United States Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
For testing conditional independence (CI) of a response Y and a predictor X given covariates Z, the recently introduced model-X (MX) framework has been the subject of active methodological research, especially in the ... 详细信息
来源: 评论
Occam's razor for AI: Coarse-graining Hammett Inspired Product Ansatz in Chemical Space
arXiv
收藏 引用
arXiv 2023年
作者: Bragato, Marco Von Rudorff, Guido Falk Von Lilienfeld, O. Anatole University of Vienna Faculty of Physics Kolingasse 1416 WienAT1090 Austria University Kassel Department of Chemistry Heinrich-Plett-Str.40 Kassel34132 Germany Heinrich-Plett-Straße 40 Kassel34132 Germany Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Machine Learning Group Technische Universität Berlin Germany Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
data-hungry machine learning methods have become a new standard to efficiently navigate chemical compound space for molecular and materials design and discovery. Due to the severe scarcity and cost of high-quality exp... 详细信息
来源: 评论
Reconstructing Galaxy Cluster Mass Maps using Score-based Generative Modeling
arXiv
收藏 引用
arXiv 2024年
作者: Hsu, Alan Ho, Matthew Lin, Joyce Markey, Carleen Ntampaka, Michelle Trac, Hy Póczos, Barnabás Department of Astronomy Harvard University CambridgeMA02138 United States Department of Physics Carnegie Mellon University PittsburghPA15213 United States UMR 7095 98 bis bd Arago ParisF-75014 France Columbia Astrophysics Laboratory Columbia University 550 West 120th Street New YorkNY10027 United States Department of Physics University of Wisconsin-Madison MadisonWI53726 United States McWilliams Center for Cosmology and Astrophysics Carnegie Mellon University PittsburghPA15213 United States Data Science Mission Office Space Telescope Science Institute BaltimoreMD21218 United States Department of Physics & Astronomy Johns Hopkins University BaltimoreMD21218 United States Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States
We present a novel approach to reconstruct gas and dark matter projected density maps of galaxy clusters using score-based generative modeling. Our diffusion model takes in mock SZ and X-ray images as conditional inpu... 详细信息
来源: 评论
Species-specific responses of canopy greenness to the extreme droughts of 2018 and 2022 for four abundant tree species in Germany
收藏 引用
science of the Total Environment 2025年 958卷 177938页
作者: Wang, Yixuan Rammig, Anja Blickensdörfer, Lukas Wang, Yuanyuan Zhu, Xiao Xiang Buras, Allan Professorship for Land Surface-Atmosphere Interactions Technical University of Munich Hans-Carl-v.-Carlowitz-Platz 2 Freising85354 Germany Thünen Institute of Farm Economics Bundesallee 63 Braunschweig38116 Germany Thünen Institute of Forest Ecosystems Alfred-Moeller-Straße 1 Eberswalde16225 Germany Earth Observation Lab Geography Department Humboldt University of Berlin Unter den Linden 6 Berlin10099 Germany Chair of Data Science in Earth Observation Technical University of Munich Arcisstraße 21 Munich80333 Germany Munich Center for Machine Learning Arcisstraße 21 Munich80333 Germany
Germany experienced extreme drought periods in 2018 and 2022, which significantly affected forests. These drought periods were natural experiments, providing valuable insights into how different tree species respond t... 详细信息
来源: 评论
Revealing excited states of rotational Bose–Einstein condensates
arXiv
收藏 引用
arXiv 2023年
作者: Yin, Jianyuan Huang, Zhen Cai, Yongyong Du, Qiang Zhang, Lei School of Mathematical Sciences Laboratory of Mathematics and Applied Mathematics Peking University Beijing100871 China Department of Mathematics National University of Singapore Singapore119076 Singapore Department of Mathematics University of California BerkeleyCA94720 United States School of Mathematical Sciences Beijing Normal University Beijing100875 China Department of Applied Physics and Applied Mathematics Data Science Institute Columbia University New YorkNY10027 United States Beijing International Center for Mathematical Research Center for Quantitative Biology Center for Machine Learning Research Peking University Beijing100871 China
Rotational Bose–Einstein condensates can exhibit quantized vortices as topological excitations. In this study, the ground and excited states of the rotational Bose–Einstein condensates are systematically studied by ... 详细信息
来源: 评论
Position: Bayesian Deep learning is Needed in the Age of Large-Scale AI
arXiv
收藏 引用
arXiv 2024年
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina Aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论
Looking Beyond Two Frames: End-to-End Multi-Object Tracking Using Spatial and Temporal Transformers
arXiv
收藏 引用
arXiv 2021年
作者: Zhu, Tianyu Hiller, Markus Ehsanpour, Mahsa Ma, Rongkai Drummond, Tom Reid, Ian Rezatofighi, Hamid The Department of Electrical and Computer Systems Engineering Monash University Australia The School of Computing and Information Systems The University of Melbourne Australia The Australian Institute for Machine Learning The University of Adelaide Australia The Department of Data Science and AI Monash University Australia The Australian Centre for Robotic Vision Australia
Tracking a time-varying indefinite number of objects in a video sequence over time remains a challenge despite recent advances in the field. Most existing approaches are not able to properly handle multi-object tracki... 详细信息
来源: 评论
Deep learning Meets Teleconnections: Improving S2S Predictions for European Winter Weather
arXiv
收藏 引用
arXiv 2025年
作者: Bommer, Philine L. Kretschmer, Marlene Spuler, Fiona R. Bykov, Kirill Höhne, Marina M.-C. Understandable Machine Intelligence Lab TU Berlin Berlin Germany Department of Data Science ATB Potsdam Germany Leipzig Institute for Meteorology Leipzig University Leipzig Germany Department of Meteorology University of Reading Reading United Kingdom The Alan Turing Institute London United Kingdom Institute of Computer Science University of Potsdam Potsdam Germany BIFOLD Berlin Institute for the Foundations of Learning and Data Berlin Germany
Predictions on subseasonal-to-seasonal (S2S) timescales—ranging from two weeks to two months—are crucial for early warning systems but remain challenging owing to chaos in the climate system. Teleconnections, such a... 详细信息
来源: 评论
Estimate the efficiency of multiprocessor's cash memory work algorithms
arXiv
收藏 引用
arXiv 2021年
作者: Hamada, Mohamed A. Abdallah, Abdelrahman International Information Technology University Almaty Almaty050000 Kazakhstan Department of Machine Learning & Data Science Satbayev University Almaty Almaty050013 Kazakhstan National Open Research Laboratory for Information and Space Technologies Satbayev University Almaty Almaty050013 Kazakhstan
Many computer systems for calculating the proper organization of memory are among the most critical issues. Using a tier cache memory (along with branching prediction) is an effective means of increasing modern multi-... 详细信息
来源: 评论
Automated segmentation and volume measurement of intracranial carotid artery calcification on non-contrast CT
arXiv
收藏 引用
arXiv 2021年
作者: Bortsova, Gerda Bos, Daniel Dubost, Florian Vernooij, Meike W. Ikram, M. Kamran van Tulder, Gijs de Bruijne, Marleen Biomedical Imaging Group Rotterdam Department of Radiology and Nuclear Medicine Erasmus MC Rotterdam Netherlands Department of Epidemiology Erasmus MC Rotterdam Netherlands Department of Biomedical Data Science Stanford University United States Department of Radiology and Nuclear Medicine Erasmus MC Rotterdam Netherlands Faculty of Science Radboud University Netherlands Machine Learning Section Department of Computer Science University of Copenhagen Copenhagen Denmark
Purpose To develop and evaluate a fully-automated deep-learning-based method for assessment of intracranial carotid artery calcification (ICAC). Methods This was a secondary analysis of prospectively collected data fr... 详细信息
来源: 评论