咨询与建议

限定检索结果

文献类型

  • 491 篇 期刊文献
  • 349 篇 会议
  • 1 册 图书

馆藏范围

  • 841 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 506 篇 工学
    • 344 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 106 篇 生物工程
    • 71 篇 信息与通信工程
    • 67 篇 控制科学与工程
    • 64 篇 生物医学工程(可授...
    • 42 篇 光学工程
    • 40 篇 电气工程
    • 39 篇 安全科学与工程
    • 37 篇 化学工程与技术
    • 34 篇 电子科学与技术(可...
    • 23 篇 机械工程
    • 18 篇 仪器科学与技术
    • 18 篇 建筑学
    • 18 篇 土木工程
  • 385 篇 理学
    • 222 篇 数学
    • 130 篇 统计学(可授理学、...
    • 120 篇 生物学
    • 79 篇 物理学
    • 48 篇 化学
    • 39 篇 系统科学
  • 121 篇 管理学
    • 67 篇 管理科学与工程(可...
    • 55 篇 图书情报与档案管...
    • 38 篇 工商管理
  • 58 篇 医学
    • 46 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 28 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 22 篇 法学
    • 20 篇 社会学
  • 18 篇 农学
  • 16 篇 经济学
    • 16 篇 应用经济学
  • 5 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 53 篇 machine learning
  • 47 篇 deep learning
  • 43 篇 accuracy
  • 25 篇 convolutional ne...
  • 23 篇 real-time system...
  • 21 篇 reviews
  • 18 篇 decision making
  • 18 篇 training
  • 17 篇 medical services
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 17 篇 forecasting
  • 14 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 reinforcement le...
  • 13 篇 support vector m...
  • 13 篇 optimization
  • 13 篇 machine learning...
  • 12 篇 data models
  • 11 篇 scalability

机构

  • 58 篇 machine learning...
  • 46 篇 department of st...
  • 22 篇 munich center fo...
  • 21 篇 center for data ...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 center for machi...
  • 17 篇 machine learning...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 department of st...
  • 10 篇 department of ar...
  • 9 篇 department of st...
  • 8 篇 machine learning...

作者

  • 61 篇 ramdas aaditya
  • 21 篇 müller klaus-rob...
  • 19 篇 prateek verma
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 17 篇 verma prateek
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 montavon grégoir...
  • 11 篇 krahmer felix
  • 10 篇 ravikumar pradee...
  • 10 篇 do thanh-toan
  • 10 篇 wang hongjian
  • 10 篇 abhay tale

语言

  • 749 篇 英文
  • 89 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Machine Learning and Data Science"
841 条 记 录,以下是671-680 订阅
排序:
Nanoscale chemical imaging with structured X-ray illumination
收藏 引用
Proceedings of the National Academy of sciences of the United States of America 2023年 第49期120卷 e2314542120-e2314542120页
作者: Li, Jizhou Chen, Si Ratner, Daniel Blu, Thierry Pianetta, Piero Liu, Yijin Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park 94025 CA United States School of Data Science City University of HongKong Hong Kong X-ray Science Division Argonne National Laboratory Lemont 60439 IL United States Machine Learning Initiative SLAC National Accelerator Laboratory Menlo Park 94025 CA United States Department of Electronic Engineering The Chinese University of Hong Kong Hong Kong Walker Department of Mechanical Engineering The University of Texas at Austin Austin 78705 TX United States
High-resolution imaging with compositional and chemical sensitivity is crucial for a wide range of scientific and engineering disciplines. Although synchrotron X-ray imaging through spectromicroscopy has been tremendo... 详细信息
来源: 评论
Federated learning for Inference at Anytime and Anywhere
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Zicheng Li, Da Fernandez-Marques, Javier Laskaridis, Stefanos Gao, Yan Dudziak, Lukasz Li, Stan Z. Hu, Shell Xu Hospedales, Timothy School of Information Science & Electronic Engineering Zhejiang University Hangzhou China Machine Learning & Data Intelligence Samsung AI Center Cambridge United Kingdom Automated AI Samsung AI Center Cambridge United Kingdom Distributed AI Samsung AI Center Cambridge United Kingdom Department of Computer Science and Technology The University of Cambridge Cambridge United Kingdom School of Engineering Westlake University Hangzhou China School of Informatics The University of Edinburgh Edinburgh United Kingdom
Federated learning has been predominantly concerned with collaborative training of deep networks from scratch, and especially the many challenges that arise, such as communication cost, robustness to heterogeneous dat... 详细信息
来源: 评论
PAC-Bayes meta-learning with implicit task-specific posteriors
arXiv
收藏 引用
arXiv 2020年
作者: Nguyen, Cuong Do, Thanh-Toan Carneiro, Gustavo The Australian Institute for Machine Learning University of Adelaide SA5000 Australia The Department of Data Science and AI Faculty of Information Technology Monash University Australia
We introduce a new and rigorously-formulated PAC-Bayes meta-learning algorithm that solves few-shot learning. Our proposed method extends the PAC-Bayes framework from a single task setting to the meta-learning multipl... 详细信息
来源: 评论
Traffic4cast at NeurIPS 2021 – Temporal and Spatial Few-Shot Transfer learning in Gridded Geo-Spatial Processes
arXiv
收藏 引用
arXiv 2022年
作者: Eichenberger, Christian Neun, Moritz Martin, Henry Herruzo, Pedro Spanring, Markus Lu, Yichao Choi, Sungbin Konyakhin, Vsevolod Lukashina, Nina Shpilman, Aleksei Wiedemann, Nina Raubal, Martin Wang, Bo Vu, Hai L. Mohajerpoor, Reza Cai, Chen Kim, Inhi Hermes, Luca Melnik, Andrew Velioglu, Riza Vieth, Markus Schilling, Malte Bojesomo, Alabi Al Marzouqi, Hasan Liatsis, Panos Santokhi, Jay Hillier, Dylan Yang, Yiming Sarwar, Joned Jordan, Anna Hewage, Emil Jonietz, David Tang, Fei Gruca, Aleksandra Kopp, Michael Kreil, David Hochreiter, Sepp Vienna Austria Institute of Cartography and Geoinformation ETH Zurich Switzerland Layer 6 AI Toronto Canada ITMO University Saint Petersburg Russia JetBrains Research Saint Petersburg Russia HSE University Saint Petersburg Russia Institute of Transport Studies Monash University ClaytonVIC Australia CSIRO’s Data61 Eveleigh Australia Institute Civil and Environmental Engineering Department Kongju National University Korea Republic of Machine Learning & Neuroinformatics Group Bielefeld University Germany Electrical Engineering and Computer Science Department Khalifa University Abu Dhabi United Arab Emirates Alchera Data Technologies Ltd Cambridge United Kingdom HERE Technologies Zurich Switzerland Silesian University of Technology Gliwice Poland Machine Learning Institute Johannes Kepler University Linz Austria
The IARAI Traffic4cast competitions at NeurIPS 2019 and 2020 showed that neural networks can successfully predict future traffic conditions 1 hour into the future on simply aggregated GPS probe data in time and space ... 详细信息
来源: 评论
On ADMM in deep learning: convergence and saturation-avoidance
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2021年 第1期22卷 9024-9090页
作者: Jinshan Zeng Shao-Bo Lin Yuan Yao Ding-Xuan Zhou School of Computer and Information Engineering Jiangxi Normal University Nanchang China and Liu Bie Ju Centre for Mathematical Sciences City University of Hong Kong Hong Kong and Department of Mathematics Hong Kong University of Science and Technology Hong Kong Center of Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University Xi'an China Department of Mathematics Hong Kong University of Science and Technology Hong Kong School of Data Science and Department of Mathematics City University of Hong Kong Hong Kong
In this paper, we develop an alternating direction method of multipliers (ADMM) for deep neural networks training with sigmoid-type activation functions (called sigmoid-ADMM pair), mainly motivated by the gradient-fre... 详细信息
来源: 评论
Insightful analysis of historical sources at scales beyond human capabilities using unsupervised machine learning and XAI
arXiv
收藏 引用
arXiv 2023年
作者: Eberle, Oliver Büttner, Jochen El-Hajj, Hassan Montavon, Grégoire Müller, Klaus-Robert Valleriani, Matteo Machine Learning Group Technische Universität Berlin Marchstr. 23 Berlin10587 Germany BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Max Planck Institute for the History of Science Boltzmannstr. 22 Berlin14195 Germany Department of Mathematics and Computer Science Freie Universität Berlin Arnimallee 14 Berlin14195 Germany Department of Artificial Intelligence Korea University Seoul136-713 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg 4 Saarbrücken66123 Germany Institute of History and Philosophy of Science Technology and Literature Faculty I - Humanities and Educational Sciences Technische Universität Berlin Straße des 17. Juni 135 Berlin10623 Germany The Cohn Institute for the History and Philosophy of Science and Ideas Faculty of Humanities Tel Aviv University P.O.B. 39040 Ramat Aviv Tel Aviv6139001 Israel
Historical materials are abundant. Yet, piecing together how human knowledge has evolved and spread both diachronically and synchronically remains a challenge that can so far only be very selectively addressed. The va... 详细信息
来源: 评论
Accurate global machine learning force fields for molecules with hundreds of atoms
arXiv
收藏 引用
arXiv 2022年
作者: Chmiela, Stefan Vassilev-Galindo, Valentin Unke, Oliver T. Kabylda, Adil Sauceda, Huziel E. Tkatchenko, Alexandre Müller, Klaus-Robert Machine Learning Group Technische Universität Berlin Berlin10587 Germany Berlin Institute for the Foundations of Learning and Data – BIFOLD Germany Department of Physics and Materials Science University of Luxembourg Luxembourg CityL-1511 Luxembourg Google Research Brain Team Berlin Germany Departamento de Materia Condensada Instituto de Física Universidad Nacional Autónoma de México Cd. de MéxicoC.P. 04510 Mexico BASLEARN - TU Berlin BASF Joint Lab for Machine Learning Technische Universität Berlin Berlin10587 Germany Max Planck Institute for Informatics Stuhlsatzenhausweg Saarbrücken66123 Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of
Global machine learning force fields (MLFFs), that have the capacity to capture collective many-atom interactions in molecular systems, currently only scale up to a few dozen atoms due a considerable growth of the mod... 详细信息
来源: 评论
Motor imagery enhances performance beyond the imagined action
收藏 引用
Proceedings of the National Academy of sciences of the United States of America 2025年 第20期122卷 e2423642122页
作者: Gippert, Magdalena Shih, Pei-Cheng Heed, Tobias Howard, Ian S. Jamshidi Idaji, Mina Villringer, Arno Sehm, Bernhard Nikulin, Vadim V. Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig 04103 Germany Sony Computer Science Laboratories 141-0022 Tokyo Japan Department of Psychology and Centre for Cognitive Neuroscience University of Salzburg 5020 Salzburg Austria School of Engineering Computing and Mathematics Faculty of Science and Engineering University of Plymouth Plymouth PL4 8AA United Kingdom Machine Learning Group Berlin Institute for the Foundations of Learning and Data 10587 Berlin Germany Machine Learning Group Institute of Software Engineering and Theoretical Computer Science Electrical Engineering and Computer Science Faculty Technical University Berlin 10587 Berlin Germany Department of Neurology Martin Luther University of Halle-Wittenberg Halle (Saale) 06120 Germany
Motor imagery is frequently utilized to improve the performance of specific target movements in sports and rehabilitation. In this study, we show that motor imagery can facilitate learning of not only the imagined tar... 详细信息
来源: 评论
T-Cell Receptor Optimization with Reinforcement learning and Mutation Policies for Precision Immunotherapy
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Ziqi Min, Martin Renqiang Guo, Hongyu Cheng, Chao Clancy, Trevor Ning, Xia Computer Science and Engineering The Ohio State University ColumbusOH43210 United States Machine Learning Department NEC Labs PrincetonNJ08540 United States Digital Technologies Research Centre National Research Council Canada ON Canada Department of Medicine Baylor College of Medicine HoustonTX77030 United States NEC Oncolmmunity AS Oslo Cancer Cluster Innovation Park Ullernchausséen 64 Oslo0379 Norway Biomedical Informatics The Ohio State University ColumbusOH43210 United States Translational Data Analytics Institute The Ohio State University ColumbusOH43210 United States
T cells monitor the health status of cells by identifying foreign peptides displayed on their surface. T-cell receptors (TCRs), which are protein complexes found on the surface of T cells, are able to bind to these pe... 详细信息
来源: 评论
Reinforcement learning in continuous time and space: a stochastic control approach
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2020年 第1期21卷 8145-8178页
作者: Haoran Wang Thaleia Zariphopoulou Xun Yu Zhou CAI Data Science and Machine Learning The Vanguard Group Inc. Malvern PA Department of Mathematics and IROM The University of Texas at Austin Austin TX and Oxford-Man Institute University of Oxford Oxford UK Department of Industrial Engineering and Operations Research The Data Science Institute Columbia University New York NY
We consider reinforcement learning (RL) in continuous time with continuous feature and action spaces. We motivate and devise an exploratory formulation for the feature dynamics that captures learning under exploration... 详细信息
来源: 评论