咨询与建议

限定检索结果

文献类型

  • 491 篇 期刊文献
  • 349 篇 会议
  • 1 册 图书

馆藏范围

  • 841 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 506 篇 工学
    • 344 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 106 篇 生物工程
    • 71 篇 信息与通信工程
    • 67 篇 控制科学与工程
    • 64 篇 生物医学工程(可授...
    • 42 篇 光学工程
    • 40 篇 电气工程
    • 39 篇 安全科学与工程
    • 37 篇 化学工程与技术
    • 34 篇 电子科学与技术(可...
    • 23 篇 机械工程
    • 18 篇 仪器科学与技术
    • 18 篇 建筑学
    • 18 篇 土木工程
  • 385 篇 理学
    • 222 篇 数学
    • 130 篇 统计学(可授理学、...
    • 120 篇 生物学
    • 79 篇 物理学
    • 48 篇 化学
    • 39 篇 系统科学
  • 121 篇 管理学
    • 67 篇 管理科学与工程(可...
    • 55 篇 图书情报与档案管...
    • 38 篇 工商管理
  • 58 篇 医学
    • 46 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 28 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 22 篇 法学
    • 20 篇 社会学
  • 18 篇 农学
  • 16 篇 经济学
    • 16 篇 应用经济学
  • 5 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 53 篇 machine learning
  • 47 篇 deep learning
  • 43 篇 accuracy
  • 25 篇 convolutional ne...
  • 23 篇 real-time system...
  • 21 篇 reviews
  • 18 篇 decision making
  • 18 篇 training
  • 17 篇 medical services
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 17 篇 forecasting
  • 14 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 reinforcement le...
  • 13 篇 support vector m...
  • 13 篇 optimization
  • 13 篇 machine learning...
  • 12 篇 data models
  • 11 篇 scalability

机构

  • 58 篇 machine learning...
  • 46 篇 department of st...
  • 22 篇 munich center fo...
  • 21 篇 center for data ...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 center for machi...
  • 17 篇 machine learning...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 department of st...
  • 10 篇 department of ar...
  • 9 篇 department of st...
  • 8 篇 machine learning...

作者

  • 61 篇 ramdas aaditya
  • 21 篇 müller klaus-rob...
  • 19 篇 prateek verma
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 17 篇 verma prateek
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 montavon grégoir...
  • 11 篇 krahmer felix
  • 10 篇 ravikumar pradee...
  • 10 篇 do thanh-toan
  • 10 篇 wang hongjian
  • 10 篇 abhay tale

语言

  • 749 篇 英文
  • 89 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Machine Learning and Data Science"
841 条 记 录,以下是741-750 订阅
排序:
BIGDML: Towards exact machine learning force fields for materials
arXiv
收藏 引用
arXiv 2021年
作者: Sauceda, Huziel E. Gálvez-González, Luis E. Chmiela, Stefan Paz-Borbón, Lauro Oliver Müller, Klaus-Robert Tkatchenko, Alexandre Machine Learning Group Technische Universität Berlin Berlin10587 Germany BASLEARN TU Berlin BASF Joint Lab for Machine Learning Technische Universität Berlin Berlin10587 Germany División de Ciencias Exactas y Naturales Universidad de Sonora Blvd. Luis Encinas & Rosales Hermosillo Mexico BIFOLD – Berlin Institute for the Foundations of Learning and Data Germany Instituto de Física Universidad Nacional Autónoma de México Apartado Postal 20-364 CDMX01000 Mexico Google Research Brain team Berlin Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg Saarbrücken66123 Germany Department of Physics and Materials Science University of Luxembourg LuxembourgL-1511 Luxembourg
machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof. Currently, MLFFs often introduce tradeoffs that restrict the... 详细信息
来源: 评论
Automating airborne pollen classification: Identifying and interpreting hard samples for classifiers
收藏 引用
Heliyon 2025年 第2期11卷 e41656页
作者: Milling, Manuel Rampp, Simon D.N. Triantafyllopoulos, Andreas Plaza, Maria P. Brunner, Jens O. Traidl-Hoffmann, Claudia Schuller, Björn W. Damialis, Athanasios CHI – Chair of Health Informatics MRI Technical University of Munich Munich Germany MCML–Munich Center for Machine Learning Germany EIHW – Chair of Embedded Intelligence for Health Care & Wellbeing University of Augsburg Augsburg Germany Institute of Environmental Medicine and Integrative Health Faculty of Medicine University Clinic of Augsburg & University of Augsburg Augsburg Germany Institute of Environmental Medicine Helmholtz Center Munich German Research Center for Environmental Health Germany Faculty of Business and Economics and Faculty of Medicine University of Augsburg Augsburg Germany Department of Technology Management and Economics Technical University of Denmark Denmark Next Generation Technology Region Zealand Denmark Christine Kühne Center for Allergy Research and Education Davos Switzerland MDSI–Munich Data Science Institute Germany GLAM–the Group on Language Audio & Music Imperial College London London United Kingdom Terrestrial Ecology and Climate Change Department of Ecology School of Biology Faculty of Sciences Aristotle University of Thessaloniki Thessaloniki Greece
Deep-learning-based classification of pollen grains has been a major driver towards automatic monitoring of airborne pollen. Yet, despite an abundance of available datasets, little effort has been spent to investigate... 详细信息
来源: 评论
Lessons Learned from Assessing Trustworthy AI in Practice
收藏 引用
Digital Society 2023年 第3期2卷 1-25页
作者: Vetter, Dennis Amann, Julia Bruneault, Frédérick Coffee, Megan Düdder, Boris Gallucci, Alessio Gilbert, Thomas Krendl Hagendorff, Thilo van Halem, Irmhild Hickman, Eleanore Hildt, Elisabeth Holm, Sune Kararigas, Georgios Kringen, Pedro Madai, Vince I. Wiinblad Mathez, Emilie Tithi, Jesmin Jahan Westerlund, Magnus Wurth, Renee Zicari, Roberto V. Computational Vision and Artificial Intelligence Lab Goethe University Frankfurt Frankfurt Am Main Germany Z-Inspection® Initiative Venice Italy Health Ethics and Policy Lab ETH Zurich Zurich Switzerland Strategy and Innovation Careum Foundation Zurich Switzerland Philosophie Departement Collège André-Laurendeau Montréal Canada École Des Médias Université du Québec À Montréal Montréal Canada Department of Medicine Division of Infectious Diseases and Immunology New York University Grossman School of Medicine New York City USA Department of Computer Science University of Copenhagen Copenhagen Denmark Digital Life Initiative Cornell Tech New York City USA Cluster of Excellence “Machine Learning: New Perspectives for Science” University of Tuebingen Tuebingen Germany School of Law University of Bristol Bristol UK Center for the Study of Ethics in the Professions Illinois Institute of Technology Chicago USA Department of Business Management and Analytics Arcada University of Applied Sciences Helsinki Finland Department of Food & Resource Economics University of Copenhagen Copenhagen Denmark Department of Physiology Faculty of Medicine University of Iceland Reykjavik Iceland QUEST Centre for Responsible Research Berlin Institute of Health Charité Universitätsmedizin Berlin Berlin Germany Faculty of Computing Engineering and the Built Environment School of Computing and Digital Technology Birmingham City University Birmingham UK Parallel Computing Labs Intel Santa Clara USA School of Economics Innovation and Technology Kristiania University College Oslo Norway Data Science Graduate School Seoul National University Seoul South Korea
Building artificial intelligence (AI) systems that adhere to ethical standards is a complex problem. Even though a multitude of guidelines for the design and development of such trustworthy AI systems exist, these gui...
来源: 评论
Harnessing multimodal approaches for depression detection using large language models and facial expressions
Npj mental health research
收藏 引用
Npj mental health research 2024年 第1期3卷 66页
作者: Misha Sadeghi Robert Richer Bernhard Egger Lena Schindler-Gmelch Lydia Helene Rupp Farnaz Rahimi Matthias Berking Bjoern M Eskofier Machine Learning and Data Analytics Lab (MaD Lab) Department Artificial Intelligence in Biomedical Engineering (AIBE) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen 91052 Germany. misha.sadeghi@fau.de. Machine Learning and Data Analytics Lab (MaD Lab) Department Artificial Intelligence in Biomedical Engineering (AIBE) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen 91052 Germany. Chair of Visual Computing (LGDV) Department of Computer Science Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen 91058 Germany. Chair of Clinical Psychology and Psychotherapy (KliPs) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen 91052 Germany. Translational Digital Health Group Institute of AI for Health Helmholtz Zentrum München - German Research Center for Environmental Health Neuherberg 85764 Germany.
Detecting depression is a critical component of mental health diagnosis, and accurate assessment is essential for effective treatment. This study introduces a novel, fully automated approach to predicting depression s...
来源: 评论
Ranking-based convolutional neural network models for peptide-MHC binding prediction
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Ziqi Min, Martin Renqiang Ning, Xia Computer Science and Engineering Department Ohio State University ColumbusOH United States Machine Learning Department NEC Labs America PrincetonNJ United States Biomedical Informatics Department Ohio State University ColumbusOH United States Translational Data Analytics Institute Ohio State University ColumbusOH United States
T-cell receptors can recognize foreign peptides bound to major histocompatibility complex (MHC) class-I proteins, and thus trigger the adaptive immune response. Therefore, identifying peptides that can bind to MHC cla... 详细信息
来源: 评论
Explaining bayesian neural networks
arXiv
收藏 引用
arXiv 2021年
作者: Bykov, Kirill Höhne, Marina M.-C. Creosteanu, Adelaida Müller, Klaus-Robert Machine Learning Group Technische Universität Berlin Marchstr. 23 Berlin10587 Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg 4 Saarbrücken66123 Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Technische Universität Berlin Berlin Germany Google Research Brain team Berlin Germany Department of Computer Science TU Kaiserslautern Germany Heidelberg Germany Institute of Pathology Charite – Universitätsmedizin Berlin Berlin Germany Aignostics Berlin Germany RIKEN AIP 1-4-1 Nihonbashi Chuo-ku Tokyo Japan
—To make advanced learning machines such as Deep Neural Networks (DNNs) more transparent in decision making, explainable AI (XAI) aims to provide interpretations of DNNs’ predictions. These interpretations are usual... 详细信息
来源: 评论
Trend filtering - II. Denoising astronomical signals with varying degrees of smoothness
arXiv
收藏 引用
arXiv 2020年
作者: Politsch, Collin A. Cisewski-Kehe, Jessi Croft, Rupert A.C. Wasserman, Larry Department of Statistics & Data Science Carnegie Mellon University PittsburghPA15213 United States Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States McWilliams Center for Cosmology Carnegie Mellon University PittsburghPA15213 United States Department of Statistics and Data Science Yale University New HavenCT06520 United States Department of Physics Carnegie Mellon University PittsburghPA15213 United States School of Physics University of Melbourne VIC3010 Australia
Trend filtering-first introduced into the astronomical literature in Paper I of this series-is a state-of-the-art statistical tool for denoising one-dimensional signals that possess varying degrees of smoothness. In t... 详细信息
来源: 评论
Synchronized sensor insoles for clinical gait analysis in home-monitoring applications
收藏 引用
Current Directions in Biomedical Engineering 2018年 第1期4卷 433-437页
作者: Roth, Nils Martindale, Christine F. Gaßner, Heiko Kohl, Zacharias Klucken, Jochen Eskofer, Bjoern M. Machine Learning and Data Analytics Lab. Department of Computer Science Friedrich-Alexander-University Erlangen-Nürnberg (FAU) Erlangen Germany Department of Molecular Neurology University Hospital Erlangen Germany
Wearable sensor systems are of increasing interest in clinical gait analysis. However, little information about gait dynamics of patients under free living conditions is available, due to the challenges of integrating... 详细信息
来源: 评论
Predictive inference with the jackknife+
arXiv
收藏 引用
arXiv 2019年
作者: Barber, Rina Foygel Candés, Emmanuel J. Ramdas, Aaditya Tibshirani, Ryan J. Department of Statistics University of Chicago Departments of Statistics and Mathematics Stanford University Department of Statistics and Data Science Carnegie Mellon University Machine Learning Department Carnegie Mellon University
This paper introduces the jackknife+, which is a novel method for constructing predictive confidence intervals. Whereas the jackknife outputs an interval centered at the predicted response of a test point, with the wi... 详细信息
来源: 评论
The Omniglot challenge: A 3-year progress report
arXiv
收藏 引用
arXiv 2019年
作者: Lake, Brenden M. Salakhutdinov, Ruslan Tenenbaum, Joshua B. Department of Psychology Center for Data Science New York University Machine Learning Department Carnegie Mellon University Department of Brain and Cognitive Sciences Center for Brains Minds and Machines MIT
Three years ago, we released the Omniglot dataset for one-shot learning, along with five challenge tasks and a computational model that addresses these tasks. The model was not meant to be the final word on Omniglot;w... 详细信息
来源: 评论