咨询与建议

限定检索结果

文献类型

  • 100 篇 会议
  • 76 篇 期刊文献

馆藏范围

  • 176 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 119 篇 工学
    • 76 篇 计算机科学与技术...
    • 71 篇 软件工程
    • 42 篇 控制科学与工程
    • 18 篇 生物工程
    • 17 篇 信息与通信工程
    • 17 篇 生物医学工程(可授...
    • 13 篇 机械工程
    • 12 篇 光学工程
    • 7 篇 仪器科学与技术
    • 6 篇 电气工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 5 篇 力学(可授工学、理...
    • 4 篇 交通运输工程
    • 4 篇 农业工程
    • 3 篇 材料科学与工程(可...
  • 71 篇 理学
    • 36 篇 数学
    • 26 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 14 篇 物理学
    • 9 篇 系统科学
  • 27 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 4 篇 工商管理
  • 7 篇 法学
    • 7 篇 社会学
  • 6 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
  • 4 篇 农学
    • 4 篇 作物学
  • 2 篇 教育学
  • 1 篇 军事学

主题

  • 8 篇 reinforcement le...
  • 7 篇 robots
  • 7 篇 robot sensing sy...
  • 5 篇 object detection
  • 5 篇 hidden markov mo...
  • 4 篇 cameras
  • 4 篇 semantics
  • 4 篇 machine learning
  • 4 篇 laser radar
  • 4 篇 kinematics
  • 3 篇 safety
  • 3 篇 three-dimensiona...
  • 3 篇 markov processes
  • 3 篇 brain
  • 3 篇 learning algorit...
  • 3 篇 computational mo...
  • 3 篇 gradient methods
  • 3 篇 navigation
  • 3 篇 trajectory
  • 3 篇 feature extracti...

机构

  • 23 篇 machine learning...
  • 23 篇 robotics institu...
  • 13 篇 machine learning...
  • 12 篇 robotics institu...
  • 10 篇 machine learning...
  • 8 篇 center for neuro...
  • 8 篇 lamarr institute...
  • 7 篇 robotics institu...
  • 7 篇 machine learning...
  • 6 篇 center for robot...
  • 6 篇 neurotechnology ...
  • 5 篇 center for techn...
  • 4 篇 the department o...
  • 4 篇 the lamarr insti...
  • 4 篇 neuroscience and...
  • 4 篇 neuroscience res...
  • 4 篇 robotics institu...
  • 4 篇 dahlem center fo...
  • 3 篇 department of en...
  • 3 篇 honda r&d co. lt...

作者

  • 27 篇 schneider jeff
  • 11 篇 jeff schneider
  • 10 篇 stachniss cyrill
  • 8 篇 neiswanger willi...
  • 8 篇 mehta viraj
  • 7 篇 char ian
  • 5 篇 behley jens
  • 5 篇 gordon geoffrey ...
  • 5 篇 zhang yi
  • 5 篇 huang tzu-kuo
  • 5 篇 gordleeva susann...
  • 4 篇 sami haddadin
  • 4 篇 gupta saurabh
  • 4 篇 savosenkov andre...
  • 4 篇 chung youngseog
  • 4 篇 guadagnino tizia...
  • 4 篇 udoratina anna
  • 4 篇 grigorev nikita
  • 4 篇 marc toussaint
  • 4 篇 xiong liang

语言

  • 164 篇 英文
  • 12 篇 其他
检索条件"机构=Department of Machine Learning and Robotics"
176 条 记 录,以下是91-100 订阅
排序:
Predicting Dense and Context-aware Cost Maps for Semantic Robot Navigation
arXiv
收藏 引用
arXiv 2022年
作者: Goel, Yash Vaskevicius, Narunas Palmieri, Luigi Chebrolu, Nived Stachniss, Cyrill The laboratory for Photogrammetry and Robotics University of Bonn Germany Robert Bosch GmbH Germany Robert Bosch GmbH Corporate Research Stuttgart Germany The Dynamic Robot Systems Group University of Oxford United Kingdom The University of Bonn Germany The Department of Engineering Science the University of Oxford United Kingdom The Lamarr Institute for Machine Learning and Artificial Intelligence Germany
We investigate the task of object goal navigation in unknown environments where the target is specified by a semantic label (e.g. find a couch). Such a navigation task is especially challenging as it requires understa... 详细信息
来源: 评论
Knowledge-aware Graph Transformer for Pedestrian Trajectory Prediction
Knowledge-aware Graph Transformer for Pedestrian Trajectory ...
收藏 引用
International Conference on Intelligent Transportation
作者: Yu Liu Yuexin Zhang Kunming Li Yongliang Qiao Stewart Worrall You-Fu Li He Kong Shenzhen Key Laboratory of Control Theory and Intelligent Systems Southern University of Science and Technology (SUSTech) Shenzhen China Department of Mechanical Engineering City University of Hong Kong Hong Kong SAR China School of Automation Guangdong Polytechnic Normal University Guangzhou China Australian Centre for Field Robotics The University of Sydney NSW Australia Australian Institute for Machine Learning The University of Adelaide SA Australia Department of Mechanical Engineering City University of Hong Kong Hong Kong SAR China Shenzhen Key Laboratory of Control Theory and Intelligent Systems SUSTech Shenzhen China Guangdong Provincial Key Laboratory of Human-Augmentation Rehabilitation Robotics in Universities SUSTech Shenzhen China
Predicting pedestrian motion trajectories is crucial for path planning and motion control of autonomous vehicles. Accurately forecasting crowd trajectories is challenging due to the uncertain nature of human motions i...
来源: 评论
Biomimetic robots promote the 3Rs Principle in animal testing
Biomimetic robots promote the 3Rs Principle in animal testin...
收藏 引用
2021 Conference on Artificial Life, ALIFE 2021
作者: Bierbach, David Francisco, Fritz Lukas, Juliane Landgraf, Tim Maxeiner, Moritz Romanczuk, Pawel Musiolek, Lea Hafner, Verena V. Krause, Jens Faculty of Life Sciences Division of Biology and Ecology of Fishes Humboldt Universität zu Berlin Berlin Germany Department of Biology and Ecology of Fishes Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin Germany Dahlem Center for Machine Learning and Robotics Freie Universität Berlin Berlin Germany Faculty of Life Sciences Institute for Theoretical Biology Humboldt Universität zu Berlin Berlin Germany Adaptive Systems Group Department of Computer Science Humboldt-Universität zu Berlin Berlin Germany
In order to strengthen animal welfare, many countries require that experimenters follow the ‘3Rs Principle’ when designing animal experiments. The 3Rs call for a reduction in the number of animals used, the refineme... 详细信息
来源: 评论
Asynchronous multi agent active search
arXiv
收藏 引用
arXiv 2020年
作者: Ghods, Ramina Banerjee, Arundhati Schneider, Jeff School of Computer Science Carnegie Mellon University Robotics Institute School of Computer Science Carnegie Mellon University Department of Machine Learning
Active search refers to the problem of efficiently locating targets in an unknown environment by actively making data-collection decisions, and has many applications including detecting gas leaks, radiation sources or... 详细信息
来源: 评论
Cost-Effective Communication in UDN in Indoor and Outdoor Environment via machine learning
Cost-Effective Communication in UDN in Indoor and Outdoor En...
收藏 引用
Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), International Conference on
作者: K Nattar Karman V. Velmurugan Kommisetti Murthy Raju T. Sajana V. Vijayalakshmi JoshuvaArockia Dhanraj Departmeru of Artificial Intelligence and Machine Learning Saveetha School of Engineering Chennai Tamil Nadu India Department of Electronics and Communication Engineering Vel Tech Rangarajan and Dr.Sagunthala R&D Institute of science and Technology Chennai Tamil Nadu India Department of Electronics and Communication Engineering Shri Vishnu Engineering College for Women West Godavari Andhra Pradesh India Department of Artificial Intelligence and Data Science KoneruLakshmaiah Education Foundation Vaddeswaram Andhra Pradesh India Department of Networking and Communications School of Computing SRM Institute of Science and Technology Kattankulathur Tamil Nadu India Department of Mechatronics Engineering Centre for Automation and Robotics (ANRO) Hindustan Institute of Technology and Science Chennai Tamil Nadu India
In general, applications on a densely populated network are slower. When there are no opportunities to interact with the devices on the network, the user is forced to communicate at some cost. Thus, the inconsistency ... 详细信息
来源: 评论
Neural dynamical systems: Balancing structure and flexibility in physical prediction
arXiv
收藏 引用
arXiv 2020年
作者: Mehta, Viraj Char, Ian Neiswanger, Willie Chung, Youngseog Nelson, Andrew Oakleigh Boyer, Mark D. Kolemen, Egemen Schneider, Jeff Robotics Institute Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States Princeton Plasma Physics Laboratory United States
We introduce Neural Dynamical Systems (NDS), a method of learning dynamical models in various gray-box settings which incorporates prior knowledge in the form of systems of ordinary differential equations. NDS uses ne... 详细信息
来源: 评论
Molecular Contrastive learning of Representations via Graph Neural Networks
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Yuyang Wang, Jianren Cao, Zhonglin Farimani, Amir Barati Department of Mechanical Engineering Carnegie Mellon University PittsburghPA15213 United States Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States Robotics Institute Carnegie Mellon University PittsburghPA15213 United States Department of Chemical Engineering Carnegie Mellon University PittsburghPA15213 United States
Molecular machine learning (ML) bears promise for efficient molecule property prediction and drug discovery. However, labeled molecule data can be expensive and time-consuming to acquire. Due to the limited labeled da... 详细信息
来源: 评论
Graph network for simultaneous learning of forward and inverse physics
arXiv
收藏 引用
arXiv 2021年
作者: Prakash, Sakthi Kumar Arul Tucker, Conrad Department of Mechanical Engineering Carnegie Mellon University United States Department of Machine Learning Carnegie Mellon University United States The Robotics Institute Carnegie Mellon University United States CyLab Security and Privacy Institute Carnegie Mellon University United States Department of Biomedical Engineering Carnegie Mellon University 5000 Forbes Avenue PittsburghPA15213 United States
In this work, we propose an end-to-end graph network that learns forward and inverse models of particle-based physics using interpretable inductive biases. Physics-informed neural networks are often engineered to solv... 详细信息
来源: 评论
Shared control of robot-robot collaborative lifting with agent postural and force ergonomic optimization
arXiv
收藏 引用
arXiv 2021年
作者: Rapetti, Lorenzo Tirupachuri, Yeshasvi Ranavolo, Alberto Kawakami, Tomohiro Yoshiike, Takahide Pucci, Daniele Dynamic Interaction Control at Istituto Italiano di Tecnologia Center for Robotics Technologies Genova Italy Machine Learning and Optimisation University of Manchester Manchester United Kingdom Department of Occupational and Environmental Medicine Epidemiology and Hygiene INAIL Roma Italy Honda R&D Co. Ltd. Saitama Japan
Humans show specialized strategies for efficient collaboration. Transferring similar strategies to humanoid robots can improve their capability to interact with other agents, leading the way to complex collaborative s... 详细信息
来源: 评论
Enabling robot selective trained deep neural networks for object detection through intelligent infrastructure  2019
Enabling robot selective trained deep neural networks for ob...
收藏 引用
4th International Conference on Automation, Control and robotics Engineering, CACRE 2019
作者: Poss, Christian Irrenhauser, Thomas Prueglmeier, Marco Goehring, Daniel Zoghlami, Firas Salehi, Vahid Ibragimov, Olimjon Logistics Robotics BMW Group Munich Germany Dahlem Center for Robotics and Machine Learning Freie Universität Berlin Germany Department of Applied Sciences and Mechatronic University of Applied Sciences Munich Germany School of International Business and Entrepreneurship Steinbeis University Berlin Germany
To save costs in logistics, handling steps are going to be automated by robots in the future. Due to the complex industrial conditions prevailing there, this is only possible with a sufficient degree of intelligence i... 详细信息
来源: 评论