咨询与建议

限定检索结果

文献类型

  • 100 篇 会议
  • 76 篇 期刊文献

馆藏范围

  • 176 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 119 篇 工学
    • 76 篇 计算机科学与技术...
    • 71 篇 软件工程
    • 42 篇 控制科学与工程
    • 18 篇 生物工程
    • 17 篇 信息与通信工程
    • 17 篇 生物医学工程(可授...
    • 13 篇 机械工程
    • 12 篇 光学工程
    • 7 篇 仪器科学与技术
    • 6 篇 电气工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 5 篇 力学(可授工学、理...
    • 4 篇 交通运输工程
    • 4 篇 农业工程
    • 3 篇 材料科学与工程(可...
  • 71 篇 理学
    • 36 篇 数学
    • 26 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 14 篇 物理学
    • 9 篇 系统科学
  • 27 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 4 篇 工商管理
  • 7 篇 法学
    • 7 篇 社会学
  • 6 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
  • 4 篇 农学
    • 4 篇 作物学
  • 2 篇 教育学
  • 1 篇 军事学

主题

  • 8 篇 reinforcement le...
  • 7 篇 robots
  • 7 篇 robot sensing sy...
  • 5 篇 object detection
  • 5 篇 hidden markov mo...
  • 4 篇 cameras
  • 4 篇 semantics
  • 4 篇 machine learning
  • 4 篇 laser radar
  • 4 篇 kinematics
  • 3 篇 safety
  • 3 篇 three-dimensiona...
  • 3 篇 markov processes
  • 3 篇 brain
  • 3 篇 learning algorit...
  • 3 篇 computational mo...
  • 3 篇 gradient methods
  • 3 篇 navigation
  • 3 篇 trajectory
  • 3 篇 feature extracti...

机构

  • 23 篇 machine learning...
  • 23 篇 robotics institu...
  • 13 篇 machine learning...
  • 12 篇 robotics institu...
  • 10 篇 machine learning...
  • 8 篇 center for neuro...
  • 8 篇 lamarr institute...
  • 7 篇 robotics institu...
  • 7 篇 machine learning...
  • 6 篇 center for robot...
  • 6 篇 neurotechnology ...
  • 5 篇 center for techn...
  • 4 篇 the department o...
  • 4 篇 the lamarr insti...
  • 4 篇 neuroscience and...
  • 4 篇 neuroscience res...
  • 4 篇 robotics institu...
  • 4 篇 dahlem center fo...
  • 3 篇 department of en...
  • 3 篇 honda r&d co. lt...

作者

  • 27 篇 schneider jeff
  • 11 篇 jeff schneider
  • 10 篇 stachniss cyrill
  • 8 篇 neiswanger willi...
  • 8 篇 mehta viraj
  • 7 篇 char ian
  • 5 篇 behley jens
  • 5 篇 gordon geoffrey ...
  • 5 篇 zhang yi
  • 5 篇 huang tzu-kuo
  • 5 篇 gordleeva susann...
  • 4 篇 sami haddadin
  • 4 篇 gupta saurabh
  • 4 篇 savosenkov andre...
  • 4 篇 chung youngseog
  • 4 篇 guadagnino tizia...
  • 4 篇 udoratina anna
  • 4 篇 grigorev nikita
  • 4 篇 marc toussaint
  • 4 篇 xiong liang

语言

  • 164 篇 英文
  • 12 篇 其他
检索条件"机构=Department of Machine Learning and Robotics"
176 条 记 录,以下是141-150 订阅
排序:
Terrain classification with conditional random fields on fused 3D LIDAR and camera data
Terrain classification with conditional random fields on fus...
收藏 引用
European Conference on Mobile Robots (ECMR)
作者: Stefan Laible Yasir Niaz Khan Andreas Zell Chair of Cognitive Systems University of Tübingen Tübingen Germany Department of Machine Learning and Robotics University of Stuttgart Germany
For a mobile robot to navigate safely and efficiently in an outdoor environment, it has to recognize its surrounding terrain. Our robot is equipped with a low-resolution 3D LIDAR and a color camera. The data from both... 详细信息
来源: 评论
Exploring friend's influence in cultures in Twitter
Exploring friend's influence in cultures in Twitter
收藏 引用
International Conference on Advances in Social Network Analysis and Mining, ASONAM
作者: Anika Gupta Katia P. Sycara Geoffrey J. Gordon Ahmed Hefny Language Technologies Institute Carnegie Mellon University Robotics Institute Carnegie Mellon University Machine Learning Department Carnegie Mellon University
What does a user do when he logs in to the Twitter website? Does he merely browse through the tweets of all his friends as a source of information for his own tweets, or does he simply tweet a message of his own perso... 详细信息
来源: 评论
learning Hidden Markov Models from Non-sequence Data via Tensor Decomposition  13
Learning Hidden Markov Models from Non-sequence Data via Ten...
收藏 引用
Annual Conference on Neural Information Processing Systems
作者: Tzu-Kuo Huang Jeff Schneider Machine Learning Department Carnegie Mellon University Pittsburgh PA 15213 Robotics Institute Carnegie Mellon University Pittsburgh PA 15213
learning dynamic models from observed data has been a central issue in many scientific studies or engineering tasks. The usual setting is that data are collected sequentially from trajectories of some dynamical system... 详细信息
来源: 评论
Maximum margin output coding
Maximum margin output coding
收藏 引用
29th International Conference on machine learning, ICML 2012
作者: Zhang, Yi Schneider, Jeff Machine Learning Department Carnegie Mellon University United States Robotics Institute Carnegie Mellon University United States
In this paper we study output coding for multi-label prediction. For a multi-label output coding to be discriminative, it is important that codewords for different label vectors are significantly different from each o... 详细信息
来源: 评论
Direct robust matrix factorization for anomaly detection
Direct robust matrix factorization for anomaly detection
收藏 引用
11th IEEE International Conference on Data Mining, ICDM 2011
作者: Xiong, Liang Chen, Xi Schneider, Jeff Machine Learning Department Carnegie Mellon University United States Robotics Institute Carnegie Mellon University United States
Matrix factorization methods are extremely useful in many data mining tasks, yet their performances are often degraded by outliers. In this paper, we propose a novel robust matrix factorization algorithm that is insen... 详细信息
来源: 评论
Group anomaly detection using Flexible Genre Models
Group anomaly detection using Flexible Genre Models
收藏 引用
25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
作者: Xiong, Liang Póczos, Barnabás Schneider, Jeff Machine Learning Department Carnegie Mellon University United States Robotics Institute Carnegie Mellon University United States
An important task in exploring and analyzing real-world data sets is to detect unusual and interesting phenomena. In this paper, we study the group anomaly detection problem. Unlike traditional anomaly detection resea...
来源: 评论
learning Auto-regressive models from sequence and non-sequence data
Learning Auto-regressive models from sequence and non-sequen...
收藏 引用
25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
作者: Huang, Tzu-Kuo Schneider, Jeff Machine Learning Department Carnegie Mellon University United States Robotics Institute Carnegie Mellon University United States
Vector Auto-regressive models (VAR) are useful tools for analyzing time series data. In quite a few modern time series modelling tasks, the collection of reliable time series turns out to be a major challenge, either ... 详细信息
来源: 评论
Hierarchical probabilistic models for group anomaly detection
Hierarchical probabilistic models for group anomaly detectio...
收藏 引用
14th International Conference on Artificial Intelligence and Statistics, AISTATS 2011
作者: Xiong, Liang Póczos, Barnabás Schneider, Jeff Connolly, Andrew VanderPlas, Jake Machine Learning Department Carnegie Mellon University United States Robotics Institute Carnegie Mellon University United States Department of Astronomy University of Washington United States
Statistical anomaly detection typically focuses on finding individual point anomalies. Often the most interesting or unusual things in a data set are not odd individual points, but rather larger scale phenomena that o... 详细信息
来源: 评论
A reduction of imitation learning and structured prediction to no-regret online learning
A reduction of imitation learning and structured prediction ...
收藏 引用
14th International Conference on Artificial Intelligence and Statistics, AISTATS 2011
作者: Ross, Stéphane Gordon, Geoffrey J. Bagnell, J. Andrew Robotics Institute Carnegie Mellon University Pittsburgh PA 15213 United States Machine Learning Department Carnegie Mellon University Pittsburgh PA 15213 United States
Sequential prediction problems such as imitation learning, where future observations depend on previous predictions (actions), violate the common i.i.d. assumptions made in statistical learning. This leads to poor per... 详细信息
来源: 评论
Exploration in relational domains for model-based reinforcement learning
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2012年 第1期13卷
作者: Tobias Lang Marc Toussaint Kristian Kersting Freie Universität Berlin Machine Learning and Robotics Group Berlin Germany Fraunhofer Institute for Intelligent Analysis and Information Systems Knowledge Discovery Department Sankt Augustin Germany
A fundamental problem in reinforcement learning is balancing exploration and exploitation. We address this problem in the context of model-based reinforcement learning in large stochastic relational domains by develop... 详细信息
来源: 评论