咨询与建议

限定检索结果

文献类型

  • 100 篇 会议
  • 76 篇 期刊文献

馆藏范围

  • 176 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 119 篇 工学
    • 76 篇 计算机科学与技术...
    • 71 篇 软件工程
    • 42 篇 控制科学与工程
    • 18 篇 生物工程
    • 17 篇 信息与通信工程
    • 17 篇 生物医学工程(可授...
    • 13 篇 机械工程
    • 12 篇 光学工程
    • 7 篇 仪器科学与技术
    • 6 篇 电气工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 5 篇 力学(可授工学、理...
    • 4 篇 交通运输工程
    • 4 篇 农业工程
    • 3 篇 材料科学与工程(可...
  • 71 篇 理学
    • 36 篇 数学
    • 26 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 14 篇 物理学
    • 9 篇 系统科学
  • 27 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 4 篇 工商管理
  • 7 篇 法学
    • 7 篇 社会学
  • 6 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
  • 4 篇 农学
    • 4 篇 作物学
  • 2 篇 教育学
  • 1 篇 军事学

主题

  • 8 篇 reinforcement le...
  • 7 篇 robots
  • 7 篇 robot sensing sy...
  • 5 篇 object detection
  • 5 篇 hidden markov mo...
  • 4 篇 cameras
  • 4 篇 semantics
  • 4 篇 machine learning
  • 4 篇 laser radar
  • 4 篇 kinematics
  • 3 篇 safety
  • 3 篇 three-dimensiona...
  • 3 篇 markov processes
  • 3 篇 brain
  • 3 篇 learning algorit...
  • 3 篇 computational mo...
  • 3 篇 gradient methods
  • 3 篇 navigation
  • 3 篇 trajectory
  • 3 篇 feature extracti...

机构

  • 23 篇 machine learning...
  • 23 篇 robotics institu...
  • 13 篇 machine learning...
  • 12 篇 robotics institu...
  • 10 篇 machine learning...
  • 8 篇 center for neuro...
  • 8 篇 lamarr institute...
  • 7 篇 robotics institu...
  • 7 篇 machine learning...
  • 6 篇 center for robot...
  • 6 篇 neurotechnology ...
  • 5 篇 center for techn...
  • 4 篇 the department o...
  • 4 篇 the lamarr insti...
  • 4 篇 neuroscience and...
  • 4 篇 neuroscience res...
  • 4 篇 robotics institu...
  • 4 篇 dahlem center fo...
  • 3 篇 department of en...
  • 3 篇 honda r&d co. lt...

作者

  • 27 篇 schneider jeff
  • 11 篇 jeff schneider
  • 10 篇 stachniss cyrill
  • 8 篇 neiswanger willi...
  • 8 篇 mehta viraj
  • 7 篇 char ian
  • 5 篇 behley jens
  • 5 篇 gordon geoffrey ...
  • 5 篇 zhang yi
  • 5 篇 huang tzu-kuo
  • 5 篇 gordleeva susann...
  • 4 篇 sami haddadin
  • 4 篇 gupta saurabh
  • 4 篇 savosenkov andre...
  • 4 篇 chung youngseog
  • 4 篇 guadagnino tizia...
  • 4 篇 udoratina anna
  • 4 篇 grigorev nikita
  • 4 篇 marc toussaint
  • 4 篇 xiong liang

语言

  • 164 篇 英文
  • 12 篇 其他
检索条件"机构=Department of Machine Learning and Robotics"
176 条 记 录,以下是161-170 订阅
排序:
learning Multiple Tasks with a Sparse Matrix-Normal Penalty  10
Learning Multiple Tasks with a Sparse Matrix-Normal Penalty
收藏 引用
Annual Conference on Neural Information Processing Systems
作者: Yi Zhang Jeff Schneider Machine Learning Department Carnegie Mellon University The Robotics Institute Carnegie Mellon University
In this paper, we propose a matrix-variate normal penalty with sparse inverse co-variances to couple multiple tasks. learning multiple (parametric) models can be viewed as estimating a matrix of parameters, where rows... 详细信息
来源: 评论
Projection penalties: Dimension reduction without loss
Projection penalties: Dimension reduction without loss
收藏 引用
27th International Conference on machine learning, ICML 2010
作者: Zhang, Yi Schneider, Jeff Machine Learning Department Carnegie Mellon University 5000 Forbes Ave. Pittsburgh PA 15213 United States Robotics Institute Carnegie Mellon University 5000 Forbes Ave. Pittsburgh PA 15213 United States
Dimension reduction is popular for learning predictive models in high-dimensional spaces. It can highlight the relevant part of the feature space and avoid the curse of dimensionality. However, it can also be harmful ... 详细信息
来源: 评论
learning the semantic correlation: An alternative way to gain from unlabeled text
Learning the semantic correlation: An alternative way to gai...
收藏 引用
22nd Annual Conference on Neural Information Processing Systems, NIPS 2008
作者: Zhang, Yi Schneider, Jeff Dubrawski, Artur Machine Learning Department Carnegie Mellon University United States Robotics Institute Carnegie Mellon University United States
In this paper, we address the question of what kind of knowledge is generally transferable from unlabeled text. We suggest and analyze the semantic correlation of words as a generally transferable structure of the lan... 详细信息
来源: 评论
learning linear dynamical systems without sequence information  09
Learning linear dynamical systems without sequence informati...
收藏 引用
26th Annual International Conference on machine learning, ICML'09
作者: Huang, Tzu-Kuo Schneider, Jeff Machine Learning Department Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 United States Robotics Institute Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 United States
Virtually all methods of learning dynamic systems from data start from the same basic assumption: that the learning algorithm will be provided with a sequence, or trajectory, of data generated from the dynamic system.... 详细信息
来源: 评论
Zero-shot learning with semantic output codes
Zero-shot learning with semantic output codes
收藏 引用
23rd Annual Conference on Neural Information Processing Systems, NIPS 2009
作者: Palatucci, Mark Pomerleau, Dean Hinton, Geoffrey Mitchell, Tom M. Robotics Institute Carnegie Mellon University Pittsburgh PA 15213 United States Intel Labs Pittsburgh PA 15213 United States Computer Science Department University of Toronto Toronto ON M5S 3G4 Canada Machine Learning Department Carnegie Mellon University Pittsburgh PA 15213 United States
We consider the problem of zero-shot learning, where the goal is to learn a classifier f: X → Y that must predict novel values of Y that were omitted from the training set. To achieve this, we define the notion of a ... 详细信息
来源: 评论
Zero-shot learning with semantic output codes  09
Zero-shot learning with semantic output codes
收藏 引用
Proceedings of the 23rd International Conference on Neural Information Processing Systems
作者: Mark Palatucci Dean Pomerleau Geoffrey Hinton Tom M. Mitchell Robotics Institute Carnegie Mellon University Pittsburgh PA Intel Labs Pittsburgh PA Computer Science Department University of Toronto Toronto Ontario Canada Machine Learning Department Carnegie Mellon University Pittsburgh PA
We consider the problem of zero-shot learning, where the goal is to learn a classifier f : X → Y that must predict novel values of Y that were omitted from the training set. To achieve this, we define the notion of a...
来源: 评论
learning the semantic correlation: an alternative way to gain from unlabeled text  08
Learning the semantic correlation: an alternative way to gai...
收藏 引用
Proceedings of the 22nd International Conference on Neural Information Processing Systems
作者: Yi Zhang Jeff Schneider Artur Dubrawski Machine Learning Department Carnegie Mellon University The Robotics Institute Carnegie Mellon University
In this paper, we address the question of what kind of knowledge is generally transferable from unlabeled text. We suggest and analyze the semantic correlation of words as a generally transferable structure of the lan...
来源: 评论
A constraint generation approach to learning stable linear dynamical systems
A constraint generation approach to learning stable linear d...
收藏 引用
21st Annual Conference on Neural Information Processing Systems, NIPS 2007
作者: Siddiqi, Sajid M. Boots, Byron Gordon, Geoffrey J. Robotics Institute Carnegie-Mellon University Pittsburgh PA 15213 United States Computer Science Department Carnegie-Mellon University Pittsburgh PA 15213 United States Machine Learning Department Carnegie-Mellon University Pittsburgh PA 15213 United States
Stability is a desirable characteristic for linear dynamical systems, but it is often ignored by algorithms that learn these systems from data. We propose a novel method for learning stable linear dynamical systems: w... 详细信息
来源: 评论
Fast planning for dynamic preferences
Fast planning for dynamic preferences
收藏 引用
18th International Conference on Automated Planning and Scheduling, ICAPS 2008
作者: Ziebart, Brian D. Dey, Anind K. Bagnell, J. Andrew Machine Learning Department Carnegie Mellon University Pittsburgh PA 15213 United States Human-Computer Interaction Institute Carnegie Mellon University Pittsburgh PA 15213 United States Robotics Institute Carnegie Mellon University Pittsburgh PA 15213 United States
We present an algorithm that quickly finds optimal plans for unforeseen agent preferences within graph-based planning domains where actions have deterministic outcomes and action costs are linearly parameterized by pr... 详细信息
来源: 评论
A latent space approach to dynamic embedding of co-occurrence data
A latent space approach to dynamic embedding of co-occurrenc...
收藏 引用
11th International Conference on Artificial Intelligence and Statistics, AISTATS 2007
作者: Sarkar, Purnamrita Siddiqi, Sajid M. Gordon, Geoffrey J. Machine Learning Department Carnegie Mellon University Pittsburgh PA 15213 United States Robotics Institute Carnegie Mellon University Pittsburgh PA 15213 United States
We consider dynamic co-occurrence data, such as author-word links in papers published in successive years of the same conference. For static co-occurrence data, researchers often seek an embedding of the entities (aut...
来源: 评论