咨询与建议

限定检索结果

文献类型

  • 100 篇 会议
  • 76 篇 期刊文献

馆藏范围

  • 176 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 119 篇 工学
    • 76 篇 计算机科学与技术...
    • 71 篇 软件工程
    • 42 篇 控制科学与工程
    • 18 篇 生物工程
    • 17 篇 信息与通信工程
    • 17 篇 生物医学工程(可授...
    • 13 篇 机械工程
    • 12 篇 光学工程
    • 7 篇 仪器科学与技术
    • 6 篇 电气工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 5 篇 力学(可授工学、理...
    • 4 篇 交通运输工程
    • 4 篇 农业工程
    • 3 篇 材料科学与工程(可...
  • 71 篇 理学
    • 36 篇 数学
    • 26 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 14 篇 物理学
    • 9 篇 系统科学
  • 27 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 4 篇 工商管理
  • 7 篇 法学
    • 7 篇 社会学
  • 6 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
  • 4 篇 农学
    • 4 篇 作物学
  • 2 篇 教育学
  • 1 篇 军事学

主题

  • 8 篇 reinforcement le...
  • 7 篇 robots
  • 7 篇 robot sensing sy...
  • 5 篇 object detection
  • 5 篇 hidden markov mo...
  • 4 篇 cameras
  • 4 篇 semantics
  • 4 篇 machine learning
  • 4 篇 laser radar
  • 4 篇 kinematics
  • 3 篇 safety
  • 3 篇 three-dimensiona...
  • 3 篇 markov processes
  • 3 篇 brain
  • 3 篇 learning algorit...
  • 3 篇 computational mo...
  • 3 篇 gradient methods
  • 3 篇 navigation
  • 3 篇 trajectory
  • 3 篇 feature extracti...

机构

  • 23 篇 machine learning...
  • 23 篇 robotics institu...
  • 13 篇 machine learning...
  • 12 篇 robotics institu...
  • 10 篇 machine learning...
  • 8 篇 center for neuro...
  • 8 篇 lamarr institute...
  • 7 篇 robotics institu...
  • 7 篇 machine learning...
  • 6 篇 center for robot...
  • 6 篇 neurotechnology ...
  • 5 篇 center for techn...
  • 4 篇 the department o...
  • 4 篇 the lamarr insti...
  • 4 篇 neuroscience and...
  • 4 篇 neuroscience res...
  • 4 篇 robotics institu...
  • 4 篇 dahlem center fo...
  • 3 篇 department of en...
  • 3 篇 honda r&d co. lt...

作者

  • 27 篇 schneider jeff
  • 11 篇 jeff schneider
  • 10 篇 stachniss cyrill
  • 8 篇 neiswanger willi...
  • 8 篇 mehta viraj
  • 7 篇 char ian
  • 5 篇 behley jens
  • 5 篇 gordon geoffrey ...
  • 5 篇 zhang yi
  • 5 篇 huang tzu-kuo
  • 5 篇 gordleeva susann...
  • 4 篇 sami haddadin
  • 4 篇 gupta saurabh
  • 4 篇 savosenkov andre...
  • 4 篇 chung youngseog
  • 4 篇 guadagnino tizia...
  • 4 篇 udoratina anna
  • 4 篇 grigorev nikita
  • 4 篇 marc toussaint
  • 4 篇 xiong liang

语言

  • 164 篇 英文
  • 12 篇 其他
检索条件"机构=Department of Machine Learning and Robotics"
176 条 记 录,以下是171-180 订阅
排序:
Fast state discovery for HMM model selection and learning
Fast state discovery for HMM model selection and learning
收藏 引用
11th International Conference on Artificial Intelligence and Statistics, AISTATS 2007
作者: Siddiqi, Sajid M. Gordon, Geoffrey J. Moore, Andrew W. Robotics Institute Carnegie Mellon University Pittsburgh PA 15213 United States Machine Learning Department Carnegie Mellon University Pittsburgh PA 15213 United States Google Inc. Pittsburgh PA 15213 United States
Choosing the number of hidden states and their topology (model selection) and estimating model parameters (learning) are important problems for Hidden Markov Models. This paper presents a new state-splitting algorithm... 详细信息
来源: 评论
learning selectively conditioned forest structures with applications to DBNs and classification
Learning selectively conditioned forest structures with appl...
收藏 引用
作者: Ziebart, Brian D. Dey, Anind K. Bagnell, J. Andrew Machine Learning Department Carnegie Mellon University Pittsburgh PA 15213 United States Human-Computer Interaction Institute Carnegie Mellon University Pittsburgh PA 15213 United States Robotics Institute Carnegie Mellon University Pittsburgh PA 15213 United States
Dealing with uncertainty in Bayesian Network structures using maximum a posteriori (MAP) estimation or Bayesian Model Averaging (BMA) is often intractable due to the superexponential number of possible directed, acycl... 详细信息
来源: 评论
A constraint generation approach to learning stable linear dynamical systems  07
A constraint generation approach to learning stable linear d...
收藏 引用
Proceedings of the 21st International Conference on Neural Information Processing Systems
作者: Sajid M. Siddiqi Byron Boots Geoffrey J. Gordon Robotics Institute Carnegie-Mellon University Pittsburgh PA Computer Science Department Carnegie-Mellon University Pittsburgh PA Machine Learning Department Carnegie-Mellon University Pittsburgh PA
Stability is a desirable characteristic for linear dynamical systems, but it is often ignored by algorithms that learn these systems from data. We propose a novel method for learning stable linear dynamical systems: w...
来源: 评论
A scalable distributed algorithm for shape transformation in multi-robot systems
A scalable distributed algorithm for shape transformation in...
收藏 引用
2007 IEEE/RSJ International Conference on Intelligent Robots and Systems
作者: Ramprasad Ravichandran Geoffrey Gordon Seth Copen Goldstein Robotics Institute Carnegie Mellon University Pittsburgh PA USA Machine Learning Department Carnegie Mellon University Pittsburgh PA USA Computer Science Department Carnegie Mellon University Pittsburgh PA USA
Distributed reconfiguration is an important problem in multi-robot systems such as mobile sensor nets and metamorphic robot systems. In this work, we present a scalable distributed reconfiguration algorithm, hierarchi... 详细信息
来源: 评论
Efficiently computing minimax expected-size confidence regions  07
Efficiently computing minimax expected-size confidence regio...
收藏 引用
24th International Conference on machine learning, ICML 2007
作者: Bryan, Brent McMahan, H. Brendan Schafer, Chad M. Schneider, Jeff Machine Learning Department Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 United States Google Pittsburgh 4720 Forbes Avenue Pittsburgh PA 15213 United States Department of Statistics Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 United States Robotics Institute Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 United States
Given observed data and a collection of parameterized candidate models, a 1 - α confidence region in parameter space provides useful insight as to those models which are a good fit to the data, all while keeping the ... 详细信息
来源: 评论
A Study On Iterative learning Control With Adjustment Of learning Interval For Monotone Convergence In The Sense Of Sup-Norm
收藏 引用
Asian Journal of Control 2008年 第1期4卷
作者: Kwang-Hyun Park Zeungnam Bien Division of EE Department of EECS Korea Advanced Institute of Science and Technology 373–1 Kusong-dong Yusong-gu Taejon 305–701 Korea. Zeungname Bien:received the B.S. degree in electronics engineering from Seoul National University Seoul Korea in 1969 and the M.S. and Ph.D. degrees in electrical engineering from the University of Iowa Iowa City Iowa U.S.A. in 1972 and 1975 respectively. During 1976–1977 academic years he taught as assistant professor at the Department of Electrical Engineering University of Iowa. Then Dr. Bien joined Korea Advanced Institute of Science and Technology summer 1977 and is now Professor of Control Engineering at the Department of Electrical Engineering and Computer Science KAIST. Dr. Bien was the president of the Korea Fuzzy Logic and Intelligent Systems Society during 1990–1995 and also the general chair of IFSA World Congress 1993 and for FUZZ-IEEE99 respectively. He is currently co-Editor-in-Chief for International Journal of Fuzzy Systems (IJFS) Associate Editor for IEEE Transactions on Fuzzy Systems and a regional editor for the International Journal of Intelligent Automation and Soft Computing. He has been serving as Vice President for IFSA since 1997 and is now Chief Chairman of Institute of Electronics Engineers of Korea and Director of Humanfriendly Welfare Robot System Research Center. His current research interests include intelligent control methods with emphasis on fuzzy logic systems service robotics and rehabilitation engineering and large-scale industrial control systems. Kwang-Hyun Park:received the B.S. M.S. and Ph.D. degrees in electrical engineering and computer science from KAIST Korea in 1994 19997 and 2001 respectively. He is now a researcher at Human-friendly Welfare Robot System Research Center. His research interests include learning control machine learning human-friendly interfaces and service robotics.
It has been found that some huge overshoot in the sense of sup-norm may be observed when typical iterative learning control (ILC) algorithms are applied to LTI systems, even though monotone convergence in the sense of... 详细信息
来源: 评论