咨询与建议

限定检索结果

文献类型

  • 100 篇 会议
  • 76 篇 期刊文献

馆藏范围

  • 176 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 119 篇 工学
    • 76 篇 计算机科学与技术...
    • 71 篇 软件工程
    • 42 篇 控制科学与工程
    • 18 篇 生物工程
    • 17 篇 信息与通信工程
    • 17 篇 生物医学工程(可授...
    • 13 篇 机械工程
    • 12 篇 光学工程
    • 7 篇 仪器科学与技术
    • 6 篇 电气工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 5 篇 力学(可授工学、理...
    • 4 篇 交通运输工程
    • 4 篇 农业工程
    • 3 篇 材料科学与工程(可...
  • 71 篇 理学
    • 36 篇 数学
    • 26 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 14 篇 物理学
    • 9 篇 系统科学
  • 27 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 4 篇 工商管理
  • 7 篇 法学
    • 7 篇 社会学
  • 6 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
  • 4 篇 农学
    • 4 篇 作物学
  • 2 篇 教育学
  • 1 篇 军事学

主题

  • 8 篇 reinforcement le...
  • 7 篇 robots
  • 7 篇 robot sensing sy...
  • 5 篇 object detection
  • 5 篇 hidden markov mo...
  • 4 篇 cameras
  • 4 篇 semantics
  • 4 篇 machine learning
  • 4 篇 laser radar
  • 4 篇 kinematics
  • 3 篇 safety
  • 3 篇 three-dimensiona...
  • 3 篇 markov processes
  • 3 篇 brain
  • 3 篇 learning algorit...
  • 3 篇 computational mo...
  • 3 篇 gradient methods
  • 3 篇 navigation
  • 3 篇 trajectory
  • 3 篇 feature extracti...

机构

  • 23 篇 machine learning...
  • 23 篇 robotics institu...
  • 13 篇 machine learning...
  • 12 篇 robotics institu...
  • 10 篇 machine learning...
  • 8 篇 center for neuro...
  • 8 篇 lamarr institute...
  • 7 篇 robotics institu...
  • 7 篇 machine learning...
  • 6 篇 center for robot...
  • 6 篇 neurotechnology ...
  • 5 篇 center for techn...
  • 4 篇 the department o...
  • 4 篇 the lamarr insti...
  • 4 篇 neuroscience and...
  • 4 篇 neuroscience res...
  • 4 篇 robotics institu...
  • 4 篇 dahlem center fo...
  • 3 篇 department of en...
  • 3 篇 honda r&d co. lt...

作者

  • 27 篇 schneider jeff
  • 11 篇 jeff schneider
  • 10 篇 stachniss cyrill
  • 8 篇 neiswanger willi...
  • 8 篇 mehta viraj
  • 7 篇 char ian
  • 5 篇 behley jens
  • 5 篇 gordon geoffrey ...
  • 5 篇 zhang yi
  • 5 篇 huang tzu-kuo
  • 5 篇 gordleeva susann...
  • 4 篇 sami haddadin
  • 4 篇 gupta saurabh
  • 4 篇 savosenkov andre...
  • 4 篇 chung youngseog
  • 4 篇 guadagnino tizia...
  • 4 篇 udoratina anna
  • 4 篇 grigorev nikita
  • 4 篇 marc toussaint
  • 4 篇 xiong liang

语言

  • 164 篇 英文
  • 12 篇 其他
检索条件"机构=Department of Machine Learning and Robotics"
176 条 记 录,以下是11-20 订阅
排序:
VARIATIONAL AUTOENCODERS IN THE PRESENCE OF LOW-DIMENSIONAL DATA: LANDSCAPE AND IMPLICIT BIAS  10
VARIATIONAL AUTOENCODERS IN THE PRESENCE OF LOW-DIMENSIONAL ...
收藏 引用
10th International Conference on learning Representations, ICLR 2022
作者: Koehler, Frederic Mehta, Viraj Zhou, Chenghui Risteski, Andrej Department of Computer Science Stanford University United States Robotics Institute Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
Variational Autoencoders (VAEs) are one of the most commonly used generative models, particularly for image data. A prominent difficulty in training VAEs is data that is supported on a lower dimensional manifold. Rece... 详细信息
来源: 评论
Sustainable Grid through Distributed Data Centers Spinning AI Demand for Grid Stabilization and Optimization
arXiv
收藏 引用
arXiv 2025年
作者: Evans, Scott C. Dahlin, Nathan Ndiaye, Ibrahima Ekanayake, Sachini Piyoni Duncan, Alexander Rose, Blake Huang, Hao AI-Machine Learning Robotics Lab United States Electrification Mission United States ECE Department University at Albany SUNY United States
We propose a disruptive paradigm to actively place and schedule TWhrs of parallel AI jobs strategically on the grid, at distributed, grid-aware high performance compute data centers (HPC) capable of using their massiv... 详细信息
来源: 评论
PID-Inspired Inductive Biases for Deep Reinforcement learning in Partially Observable Control Tasks
arXiv
收藏 引用
arXiv 2023年
作者: Char, Ian Schneider, Jeff Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States Machine Learning Department Robotics Institute Carnegie Mellon University PittsburghPA15213 United States
Deep reinforcement learning (RL) has shown immense potential for learning to control systems through data alone. However, one challenge deep RL faces is that the full state of the system is often not observable. When ... 详细信息
来源: 评论
Latent Action Priors for Locomotion with Deep Reinforcement learning
arXiv
收藏 引用
arXiv 2024年
作者: Hausdörfer, Oliver von Rohr, Alexander Lefort, Éric Schoellig, Angela P. The Technical University of Munich Germany TUM School of Computation Information and Technology Department of Computer Engineering Learning Systems and Robotics Lab Germany Munich Institute of Robotics and Machine Intelligence Germany
Deep Reinforcement learning (DRL) enables robots to learn complex behaviors through interaction with the environment. However, due to the unrestricted nature of the learning algorithms, the resulting solutions are oft... 详细信息
来源: 评论
Efficiently Closing Loops in LiDAR-Based SLAM Using Point Cloud Density Maps
arXiv
收藏 引用
arXiv 2025年
作者: Gupta, Saurabh Guadagnino, Tiziano Mersch, Benedikt Trekel, Niklas Malladi, Meher V.R. Stachniss, Cyrill Center for Robotics University of Bonn Germany Department of Engineering Science University of Oxford United Kingdom Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Consistent maps are key for most autonomous mobile robots. They often use SLAM approaches to build such maps. Loop closures via place recognition help maintain accurate pose estimates by mitigating global drift. This ... 详细信息
来源: 评论
Relative Representations: Topological and Geometric Perspectives
arXiv
收藏 引用
arXiv 2024年
作者: García-Castellanos, Alejandro Marchetti, Giovanni Luca Kragic, Danica Scolamiero, Martina Amsterdam Machine Learning Lab University of Amsterdam Netherlands Department of Mathematics KTH Royal Institute of Technology Sweden Division of Robotics Perception and Learning KTH Royal Institute of Technology Sweden
Relative representations are an established approach to zero-shot model stitching, consisting of a non-trainable transformation of the latent space of a deep neural network. Based on insights of topological and geomet... 详细信息
来源: 评论
Efficient LiDAR Bundle Adjustment for Multi-Scan Alignment Utilizing Continuous-Time Trajectories
arXiv
收藏 引用
arXiv 2024年
作者: Wiesmann, Louis Marks, Elias Gupta, Saurabh Guadagnino, Tiziano Behley, Jens Stachniss, Cyrill The Center for Robotics University of Bonn Germany The Department of Engineering Science The University of Oxford United Kingdom The Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Constructing precise global maps is a key task in robotics and is required for localization, surveying, monitoring, or constructing digital twins. To build accurate maps, data from mobile 3D LiDAR sensors is often use... 详细信息
来源: 评论
A Dataset and Benchmark for Shape Completion of Fruits for Agricultural robotics
arXiv
收藏 引用
arXiv 2024年
作者: Magistri, Federico Läbe, Thomas Marks, Elias Nagulavancha, Sumanth Pan, Yue Smitt, Claus Klingbeil, Lasse Halstead, Michael Kuhlmann, Heiner McCool, Chris Behley, Jens Stachniss, Cyrill The Center for Robotics The University of Bonn Germany The Lamarr Institute for Machine Learning and Artificial Intelligence Germany The Department of Engineering Science The University of Oxford United Kingdom
As the world population is expected to reach 10 billion by 2050, our agricultural production system needs to double its productivity despite a decline of human workforce in the agricultural sector. Autonomous robotic ... 详细信息
来源: 评论
TReR: A Lightweight Transformer Re-Ranking Approach for 3D LiDAR Place Recognition
TReR: A Lightweight Transformer Re-Ranking Approach for 3D L...
收藏 引用
International Conference on Intelligent Transportation
作者: Tiago Barros Luís Garrote Martin Aleksandrov Cristiano Premebida Urbano J. Nunes Department of Electrical and Computer Engineering University of Coimbra Institute of Systems and Robotics Portugal Dahlem Center for Machine Learning and Robotics Freie Universität Berlin Berlin
Autonomous driving systems often require reliable loop closure detection to guarantee reduced localization drift. Recently, 3D LiDAR-based localization methods have used retrieval-based place recognition to find revis...
来源: 评论
TReR: A Lightweight Transformer Re-Ranking Approach for 3D LiDAR Place Recognition
arXiv
收藏 引用
arXiv 2023年
作者: Barros, Tiago Garrote, Luís Aleksandrov, Martin Premebida, Cristiano Nunes, Urbano J. The University of Coimbra Institute of Systems and Robotics Department of Electrical and Computer Engineering Portugal Dahlem Center for Machine Learning and Robotics Freie Universität Berlin Berlin Germany
Autonomous driving systems often require reliable loop closure detection to guarantee reduced localization drift. Recently, 3D LiDAR-based localization methods have used retrieval-based place recognition to find revis... 详细信息
来源: 评论