咨询与建议

限定检索结果

文献类型

  • 100 篇 会议
  • 76 篇 期刊文献

馆藏范围

  • 176 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 119 篇 工学
    • 76 篇 计算机科学与技术...
    • 71 篇 软件工程
    • 42 篇 控制科学与工程
    • 18 篇 生物工程
    • 17 篇 信息与通信工程
    • 17 篇 生物医学工程(可授...
    • 13 篇 机械工程
    • 12 篇 光学工程
    • 7 篇 仪器科学与技术
    • 6 篇 电气工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 5 篇 力学(可授工学、理...
    • 4 篇 交通运输工程
    • 4 篇 农业工程
    • 3 篇 材料科学与工程(可...
  • 71 篇 理学
    • 36 篇 数学
    • 26 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 14 篇 物理学
    • 9 篇 系统科学
  • 27 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 4 篇 工商管理
  • 7 篇 法学
    • 7 篇 社会学
  • 6 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
  • 4 篇 农学
    • 4 篇 作物学
  • 2 篇 教育学
  • 1 篇 军事学

主题

  • 8 篇 reinforcement le...
  • 7 篇 robots
  • 7 篇 robot sensing sy...
  • 5 篇 object detection
  • 5 篇 hidden markov mo...
  • 4 篇 cameras
  • 4 篇 semantics
  • 4 篇 machine learning
  • 4 篇 laser radar
  • 4 篇 kinematics
  • 3 篇 safety
  • 3 篇 three-dimensiona...
  • 3 篇 markov processes
  • 3 篇 brain
  • 3 篇 learning algorit...
  • 3 篇 computational mo...
  • 3 篇 gradient methods
  • 3 篇 navigation
  • 3 篇 trajectory
  • 3 篇 feature extracti...

机构

  • 23 篇 machine learning...
  • 23 篇 robotics institu...
  • 13 篇 machine learning...
  • 12 篇 robotics institu...
  • 10 篇 machine learning...
  • 8 篇 center for neuro...
  • 8 篇 lamarr institute...
  • 7 篇 robotics institu...
  • 7 篇 machine learning...
  • 6 篇 center for robot...
  • 6 篇 neurotechnology ...
  • 5 篇 center for techn...
  • 4 篇 the department o...
  • 4 篇 the lamarr insti...
  • 4 篇 neuroscience and...
  • 4 篇 neuroscience res...
  • 4 篇 robotics institu...
  • 4 篇 dahlem center fo...
  • 3 篇 department of en...
  • 3 篇 honda r&d co. lt...

作者

  • 27 篇 schneider jeff
  • 11 篇 jeff schneider
  • 10 篇 stachniss cyrill
  • 8 篇 neiswanger willi...
  • 8 篇 mehta viraj
  • 7 篇 char ian
  • 5 篇 behley jens
  • 5 篇 gordon geoffrey ...
  • 5 篇 zhang yi
  • 5 篇 huang tzu-kuo
  • 5 篇 gordleeva susann...
  • 4 篇 sami haddadin
  • 4 篇 gupta saurabh
  • 4 篇 savosenkov andre...
  • 4 篇 chung youngseog
  • 4 篇 guadagnino tizia...
  • 4 篇 udoratina anna
  • 4 篇 grigorev nikita
  • 4 篇 marc toussaint
  • 4 篇 xiong liang

语言

  • 164 篇 英文
  • 12 篇 其他
检索条件"机构=Department of Machine Learning and Robotics"
176 条 记 录,以下是21-30 订阅
排序:
WEDGE: A multi-weather autonomous driving dataset built from generative vision-language models
WEDGE: A multi-weather autonomous driving dataset built from...
收藏 引用
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023
作者: Marathe, Aboli Ramanan, Deva Walambe, Rahee Kotecha, Ketan Carnegie Mellon University Machine Learning Department PA United States Carnegie Mellon University Robotics Institute PA United States India India
The open road poses many challenges to autonomous perception, including poor visibility from extreme weather conditions. Models trained on good-weather datasets frequently fail at detection in these out-of-distributio... 详细信息
来源: 评论
AN EXPERIMENTAL DESIGN PERSPECTIVE ON MODEL-BASED REINFORCEMENT learning  10
AN EXPERIMENTAL DESIGN PERSPECTIVE ON MODEL-BASED REINFORCEM...
收藏 引用
10th International Conference on learning Representations, ICLR 2022
作者: Mehta, Viraj Paria, Biswajit Schneider, Jeff Ermon, Stefano Neiswanger, Willie Robotics Insitute Machine Learning Department Carnegie Mellon University PittsburghPA United States Computer Science Department Stanford University StanfordCA United States
In many practical applications of RL, it is expensive to observe state transitions from the environment. For example, in the problem of plasma control for nuclear fusion, computing the next state for a given state-act... 详细信息
来源: 评论
∑-optimality for active learning on Gaussian random fields
∑-optimality for active learning on Gaussian random fields
收藏 引用
27th Annual Conference on Neural Information Processing Systems, NIPS 2013
作者: Ma, Yifei Garnett, Roman Schneider, Jeff Machine Learning Department Carnegie Mellon University United States Computer Science Department University of Bonn Germany Robotics Institute Carnegie Mellon University United States
A common classifier for unlabeled nodes on undirected graphs uses label propagation from the labeled nodes, equivalent to the harmonic predictor on Gaussian random fields (GRFs). For active learning on GRFs, the commo... 详细信息
来源: 评论
Sampling-based multi-dimensional recalibration  24
Sampling-based multi-dimensional recalibration
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Youngseog Chung Ian Char Jeff Schneider Machine Learning Department Machine Learning Department and Robotics Institute Carnegie Mellon University Pittsburgh PA
Calibration of probabilistic forecasts in the regression setting has been widely studied in the single dimensional case, where the output variables are assumed to be univariate. In many problem settings, however, the ...
来源: 评论
Mechanisms of Social learning in Evolved Artificial Life
Mechanisms of Social Learning in Evolved Artificial Life
收藏 引用
2020 Conference on Artificial Life, ALIFE 2020
作者: Bartoli, Alberto Catto, Marco De Lorenzo, Andrea Medvet, Eric Talamini, Jacopo Machine Learning Lab. Department of Engineering and Architecture University of Trieste Italy Evolutionary Robotics and Artificial Life Lab. Department of Engineering and Architecture University of Trieste Italy
Adaptation of agents in artificial life scenarios is especially effective when agents may evolve, i.e., inherit traits from their parents, and learn by interacting with the environment. The learning process may be boo... 详细信息
来源: 评论
VARIATIONAL AUTOENCODERS IN THE PRESENCE OF LOW-DIMENSIONAL DATA: LANDSCAPE AND IMPLICIT BIAS  10
VARIATIONAL AUTOENCODERS IN THE PRESENCE OF LOW-DIMENSIONAL ...
收藏 引用
10th International Conference on learning Representations, ICLR 2022
作者: Koehler, Frederic Mehta, Viraj Zhou, Chenghui Risteski, Andrej Department of Computer Science Stanford University United States Robotics Institute Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
Variational Autoencoders (VAEs) are one of the most commonly used generative models, particularly for image data. A prominent difficulty in training VAEs is data that is supported on a lower dimensional manifold. Rece... 详细信息
来源: 评论
Communication in Decision Making: Competition favors Inequality
Communication in Decision Making: Competition favors Inequal...
收藏 引用
2020 Conference on Artificial Life, ALIFE 2020
作者: Talamini, Jacopo Medvet, Eric Bartoli, Alberto De Lorenzo, Andrea Machine Learning Lab. Department of Engineering and Architecture University of Trieste Italy Evolutionary Robotics and Artificial Life Lab. Department of Engineering and Architecture University of Trieste Italy
We consider a multi-agent system in which the individual goal is to collect resources, but where the amount of collected resources depends also on others decision. Agents can communicate and can take advantage of bein...
来源: 评论
A latent space approach to dynamic embedding of co-occurrence data
A latent space approach to dynamic embedding of co-occurrenc...
收藏 引用
11th International Conference on Artificial Intelligence and Statistics, AISTATS 2007
作者: Sarkar, Purnamrita Siddiqi, Sajid M. Gordon, Geoffrey J. Machine Learning Department Carnegie Mellon University Pittsburgh PA 15213 United States Robotics Institute Carnegie Mellon University Pittsburgh PA 15213 United States
We consider dynamic co-occurrence data, such as author-word links in papers published in successive years of the same conference. For static co-occurrence data, researchers often seek an embedding of the entities (aut...
来源: 评论
A reduction of imitation learning and structured prediction to no-regret online learning
A reduction of imitation learning and structured prediction ...
收藏 引用
14th International Conference on Artificial Intelligence and Statistics, AISTATS 2011
作者: Ross, Stéphane Gordon, Geoffrey J. Bagnell, J. Andrew Robotics Institute Carnegie Mellon University Pittsburgh PA 15213 United States Machine Learning Department Carnegie Mellon University Pittsburgh PA 15213 United States
Sequential prediction problems such as imitation learning, where future observations depend on previous predictions (actions), violate the common i.i.d. assumptions made in statistical learning. This leads to poor per... 详细信息
来源: 评论
learning hidden Markov models from non-sequence data via tensor decomposition
Learning hidden Markov models from non-sequence data via ten...
收藏 引用
27th Annual Conference on Neural Information Processing Systems, NIPS 2013
作者: Huang, Tzu-Kuo Schneider, Jeff Machine Learning Department Carnegie Mellon University Pittsburgh PA 15213 United States Robotics Institute Carnegie Mellon University Pittsburgh PA 15213 United States
learning dynamic models from observed data has been a central issue in many scientific studies or engineering tasks. The usual setting is that data are collected sequentially from trajectories of some dynamical system... 详细信息
来源: 评论