咨询与建议

限定检索结果

文献类型

  • 100 篇 会议
  • 76 篇 期刊文献

馆藏范围

  • 176 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 119 篇 工学
    • 76 篇 计算机科学与技术...
    • 71 篇 软件工程
    • 42 篇 控制科学与工程
    • 18 篇 生物工程
    • 17 篇 信息与通信工程
    • 17 篇 生物医学工程(可授...
    • 13 篇 机械工程
    • 12 篇 光学工程
    • 7 篇 仪器科学与技术
    • 6 篇 电气工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 5 篇 力学(可授工学、理...
    • 4 篇 交通运输工程
    • 4 篇 农业工程
    • 3 篇 材料科学与工程(可...
  • 71 篇 理学
    • 36 篇 数学
    • 26 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 14 篇 物理学
    • 9 篇 系统科学
  • 27 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 4 篇 工商管理
  • 7 篇 法学
    • 7 篇 社会学
  • 6 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
  • 4 篇 农学
    • 4 篇 作物学
  • 2 篇 教育学
  • 1 篇 军事学

主题

  • 8 篇 reinforcement le...
  • 7 篇 robots
  • 7 篇 robot sensing sy...
  • 5 篇 object detection
  • 5 篇 hidden markov mo...
  • 4 篇 cameras
  • 4 篇 semantics
  • 4 篇 machine learning
  • 4 篇 laser radar
  • 4 篇 kinematics
  • 3 篇 safety
  • 3 篇 three-dimensiona...
  • 3 篇 markov processes
  • 3 篇 brain
  • 3 篇 learning algorit...
  • 3 篇 computational mo...
  • 3 篇 gradient methods
  • 3 篇 navigation
  • 3 篇 trajectory
  • 3 篇 feature extracti...

机构

  • 23 篇 machine learning...
  • 23 篇 robotics institu...
  • 13 篇 machine learning...
  • 12 篇 robotics institu...
  • 10 篇 machine learning...
  • 8 篇 center for neuro...
  • 8 篇 lamarr institute...
  • 7 篇 robotics institu...
  • 7 篇 machine learning...
  • 6 篇 center for robot...
  • 6 篇 neurotechnology ...
  • 5 篇 center for techn...
  • 4 篇 the department o...
  • 4 篇 the lamarr insti...
  • 4 篇 neuroscience and...
  • 4 篇 neuroscience res...
  • 4 篇 robotics institu...
  • 4 篇 dahlem center fo...
  • 3 篇 department of en...
  • 3 篇 honda r&d co. lt...

作者

  • 27 篇 schneider jeff
  • 11 篇 jeff schneider
  • 10 篇 stachniss cyrill
  • 8 篇 neiswanger willi...
  • 8 篇 mehta viraj
  • 7 篇 char ian
  • 5 篇 behley jens
  • 5 篇 gordon geoffrey ...
  • 5 篇 zhang yi
  • 5 篇 huang tzu-kuo
  • 5 篇 gordleeva susann...
  • 4 篇 sami haddadin
  • 4 篇 gupta saurabh
  • 4 篇 savosenkov andre...
  • 4 篇 chung youngseog
  • 4 篇 guadagnino tizia...
  • 4 篇 udoratina anna
  • 4 篇 grigorev nikita
  • 4 篇 marc toussaint
  • 4 篇 xiong liang

语言

  • 164 篇 英文
  • 12 篇 其他
检索条件"机构=Department of Machine Learning and Robotics"
176 条 记 录,以下是41-50 订阅
排序:
BATS: Best Action Trajectory Stitching
arXiv
收藏 引用
arXiv 2022年
作者: Char, Ian Mehta, Viraj Villaflor, Adam Dolan, John M. Schneider, Jeff Department of Machine Learning Carnegie Mellon University United States Robotics Institute Carnegie Mellon University United States
The problem of offline reinforcement learning focuses on learning a good policy from a log of environment interactions. Past efforts for developing algorithms in this area have revolved around introducing constraints ... 详细信息
来源: 评论
Multi-modal NeRF Self-Supervision for LiDAR Semantic Segmentation
Multi-modal NeRF Self-Supervision for LiDAR Semantic Segment...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Xavier Timoneda Markus Herb Fabian Duerr Daniel Goehring Fisher Yu Onboard Fusion Team at CARIAD SE Volkswagen Group Ingolstadt Germany Dahlem Center for Machine Learning and Robotics Group at Freie Universität Berlin Germany Department of Information Technology and Electrical Engineering ETH Zurich Switzerland
LiDAR Semantic Segmentation is a fundamental task in autonomous driving perception consisting of associating each LiDAR point to a semantic label. Fully-supervised models have widely tackled this task, but they requir... 详细信息
来源: 评论
CITR: A Coordinate-Invariant Task Representation for Robotic Manipulation
CITR: A Coordinate-Invariant Task Representation for Robotic...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Peter So Rafael I. Cabral Muchacho Robin Jeanne Kirschner Abdalla Swikir Luis Figueredo Fares J. Abu-Dakka Sami Haddadin Munich Institute of Robotics and Machine Intelligence TUM Germany Division of Robotics Perception and Learning KTH Royal Institute of Technology Sweden Department of Electrical and Electronic Engineering Omar Al-Mukhtar University (OMU) Libya School of Computer Science University of Nottingham UK Electronic and Informatics Department Faculty of Engineering Mondragon Unibertsitatea Spain
The basis for robotics skill learning is an adequate representation of manipulation tasks based on their physical properties. As manipulation tasks are inherently invariant to the choice of reference frame, an ideal t... 详细信息
来源: 评论
Wheel-GINS: A GNSS/INS Integrated Navigation System with a Wheel-mounted IMU
arXiv
收藏 引用
arXiv 2025年
作者: Wu, Yibin Kuang, Jian Niu, Xiaoji Stachniss, Cyrill Klingbeil, Lasse Kuhlmann, Heiner Center for Robotics Institute of Geodesy and Geoinformation University of Bonn Bonn Germany Department of Engineering Science University of Oxford United Kingdom Lamarr Institute for Machine Learning and Artificial Intelligence Germany GNSS Research Center Wuhan University Wuhan China
A long-term accurate and robust localization system is essential for mobile robots to operate efficiently outdoors. Recent studies have shown the significant advantages of the wheelmounted inertial measurement unit (W... 详细信息
来源: 评论
Guided Decoding for Robot On-line Motion Generation and Adaption
Guided Decoding for Robot On-line Motion Generation and Adap...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Nutan Chen Botond Cseke Elie Aljalbout Alexandros Paraschos Marvin Alles Patrick van der Smagt Machine Learning Research Lab Volkswagen Group Germany Department of Informatics Robotics and Perception Group University of Zurich (UZH) Department of Neuroinformatics UZH and ETH Zurich Switzerland Faculty of Informatics Eötvös Loránd University Budapest Hungary
We present a novel motion generation approach for robot arms, with high degrees of freedom, in complex settings that can adapt online to obstacles or new via points. learning from Demonstration facilitates rapid adapt... 详细信息
来源: 评论
Functional TMS Mapping During Sensorimotor Integration Task  5
Functional TMS Mapping During Sensorimotor Integration Task
收藏 引用
5th International Conference Neurotechnologies and Neurointerfaces, CNN 2023
作者: Udoratina, Anna Grigorev, Nikita Savosenkov, Andrey Ermolaev, Denis Maksimenko, Vladimir Gordleeva, Susanna Lobachevsky State University of Nizhny Novgorod Neurotechnology Department Nizhny Novgorod Russia Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis Russia Lobachevsky State University of Nizhny Novgorod Mathematics and Mechanics Department Nizhny Novgorod Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University Kaliningrad Russia Neuroscience Research Institute Samara State Medical University Samara Russia
In the present research, we studied spatiotemporal influence of a single-pulse TMS on the process of sensorimotor integration. We considered how real and sham stimulation of the left or right premotor, motor or sensor... 详细信息
来源: 评论
Tree Instance Segmentation and Traits Estimation for Forestry Environments Exploiting LiDAR Data Collected by Mobile Robots
Tree Instance Segmentation and Traits Estimation for Forestr...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Meher V. R. Malladi Tiziano Guadagnino Luca Lobefaro Matias Mattamala Holger Griess Janine Schweier Nived Chebrolu Maurice Fallon Jens Behley Cyrill Stachniss Center for Robotics University of Bonn Germany University of Oxford UK Swiss Federal Institute for Forest Snow and Landscape Research Switzerland Department of Engineering Science University of Oxford UK Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Forests play a crucial role in our ecosystems, functioning as carbon sinks, climate stabilizers, biodiversity hubs, and sources of wood. By the very nature of their scale, monitoring and maintaining forests is a chall... 详细信息
来源: 评论
Multi-modal NeRF Self-Supervision for LiDAR Semantic Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Timoneda, Xavier Herb, Markus Duerr, Fabian Goehring, Daniel Yu, Fisher Onboard Fusion team at CARIAD SE Volkswagen Group Ingolstadt Germany Dahlem Center for Machine Learning and Robotics group Freie Universität Berlin Germany Department of Information Technology and Electrical Engineering ETH Zürich Switzerland
LiDAR Semantic Segmentation is a fundamental task in autonomous driving perception consisting of associating each LiDAR point to a semantic label. Fully-supervised models have widely tackled this task, but they requir... 详细信息
来源: 评论
One Policy to Run Them All: an End-to-end learning Approach to Multi-Embodiment Locomotion
arXiv
收藏 引用
arXiv 2024年
作者: Bohlinger, Nico Czechmanowski, Grzegorz Krupka, Maciej Kicki, Piotr Walas, Krzysztof Peters, Jan Tateo, Davide Department of Computer Science Technical University of Darmstadt Germany Institute of Robotics and Machine Intelligence Poznan University of Technology Poland Research Department: Systems AI for Robot Learning Germany IDEAS NCBR Warsaw Poland Hessian.AI Centre for Cognitive Science
Deep Reinforcement learning techniques are achieving state-of-the-art results in robust legged locomotion. While there exists a wide variety of legged platforms such as quadruped, humanoids, and hexapods, the field is... 详细信息
来源: 评论
Exploration via planning for information about the optimal trajectory  22
Exploration via planning for information about the optimal t...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Viraj Mehta Ian Char Joseph Abbate Rory Conlin Mark D. Boyer Stefano Ermon Jeff Schneider Willie Neiswanger Robotics Institute Machine Learning Department Carnegie Mellon University Princeton University Princeton Plasma Physics Laboratory Computer Science Department Stanford University
Many potential applications of reinforcement learning (RL) are stymied by the large numbers of samples required to learn an effective policy. This is especially true when applying RL to real-world control tasks, e.g. ...
来源: 评论