咨询与建议

限定检索结果

文献类型

  • 100 篇 会议
  • 76 篇 期刊文献

馆藏范围

  • 176 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 119 篇 工学
    • 76 篇 计算机科学与技术...
    • 71 篇 软件工程
    • 42 篇 控制科学与工程
    • 18 篇 生物工程
    • 17 篇 信息与通信工程
    • 17 篇 生物医学工程(可授...
    • 13 篇 机械工程
    • 12 篇 光学工程
    • 7 篇 仪器科学与技术
    • 6 篇 电气工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 5 篇 力学(可授工学、理...
    • 4 篇 交通运输工程
    • 4 篇 农业工程
    • 3 篇 材料科学与工程(可...
  • 71 篇 理学
    • 36 篇 数学
    • 26 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 14 篇 物理学
    • 9 篇 系统科学
  • 27 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 4 篇 工商管理
  • 7 篇 法学
    • 7 篇 社会学
  • 6 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
  • 4 篇 农学
    • 4 篇 作物学
  • 2 篇 教育学
  • 1 篇 军事学

主题

  • 8 篇 reinforcement le...
  • 7 篇 robots
  • 7 篇 robot sensing sy...
  • 5 篇 object detection
  • 5 篇 hidden markov mo...
  • 4 篇 cameras
  • 4 篇 semantics
  • 4 篇 machine learning
  • 4 篇 laser radar
  • 4 篇 kinematics
  • 3 篇 safety
  • 3 篇 three-dimensiona...
  • 3 篇 markov processes
  • 3 篇 brain
  • 3 篇 learning algorit...
  • 3 篇 computational mo...
  • 3 篇 gradient methods
  • 3 篇 navigation
  • 3 篇 trajectory
  • 3 篇 feature extracti...

机构

  • 23 篇 machine learning...
  • 23 篇 robotics institu...
  • 13 篇 machine learning...
  • 12 篇 robotics institu...
  • 10 篇 machine learning...
  • 8 篇 center for neuro...
  • 8 篇 lamarr institute...
  • 7 篇 robotics institu...
  • 7 篇 machine learning...
  • 6 篇 center for robot...
  • 6 篇 neurotechnology ...
  • 5 篇 center for techn...
  • 4 篇 the department o...
  • 4 篇 the lamarr insti...
  • 4 篇 neuroscience and...
  • 4 篇 neuroscience res...
  • 4 篇 robotics institu...
  • 4 篇 dahlem center fo...
  • 3 篇 department of en...
  • 3 篇 honda r&d co. lt...

作者

  • 27 篇 schneider jeff
  • 11 篇 jeff schneider
  • 10 篇 stachniss cyrill
  • 8 篇 neiswanger willi...
  • 8 篇 mehta viraj
  • 7 篇 char ian
  • 5 篇 behley jens
  • 5 篇 gordon geoffrey ...
  • 5 篇 zhang yi
  • 5 篇 huang tzu-kuo
  • 5 篇 gordleeva susann...
  • 4 篇 sami haddadin
  • 4 篇 gupta saurabh
  • 4 篇 savosenkov andre...
  • 4 篇 chung youngseog
  • 4 篇 guadagnino tizia...
  • 4 篇 udoratina anna
  • 4 篇 grigorev nikita
  • 4 篇 marc toussaint
  • 4 篇 xiong liang

语言

  • 164 篇 英文
  • 12 篇 其他
检索条件"机构=Department of Machine Learning and Robotics"
176 条 记 录,以下是51-60 订阅
排序:
Conservative Q-improvement: Reinforcement learning for an interpretable decision-tree policy
arXiv
收藏 引用
arXiv 2019年
作者: Roth, Aaron M. Topin, Nicholay Jamshidi, Pooyan Veloso, Manuela Robotics Institute Carnegie Mellon University Machine Learning Department Carnegie Mellon University University of South Carolina
There is a growing desire in the field of reinforcement learning (and machine learning in general) to move from black-box models toward more "interpretable AI." We improve interpretability of reinforcement l... 详细信息
来源: 评论
Σ-Optimality for Active learning on Gaussian Random Fields  13
Σ-Optimality for Active Learning on Gaussian Random Fields
收藏 引用
Annual Conference on Neural Information Processing Systems
作者: Yifei Ma Roman Garnett Jeff Schneider Machine Learning Department Carnegie Mellon University Computer Science Department University of Bonn Robotics Institute Carnegie Mellon University
A common classifier for unlabeled nodes on undirected graphs uses label propagation from the labeled nodes, equivalent to the harmonic predictor on Gaussian random fields (grfs). For active learning on grfs, the commo... 详细信息
来源: 评论
One Policy to Run Them All: an End-to-end learning Approach to Multi-Embodiment Locomotion  8
One Policy to Run Them All: an End-to-end Learning Approach ...
收藏 引用
8th Conference on Robot learning, CoRL 2024
作者: Bohlinger, Nico Czechmanowski, Grzegorz Krupka, Maciej Kicki, Piotr Walas, Krzysztof Peters, Jan Tateo, Davide Department of Computer Science Technical University of Darmstadt Germany Institute of Robotics and Machine Intelligence Poznan University of Technology Poland Research Department: Systems AI for Robot Learning Germany IDEAS NCBR Warsaw Poland Hessian.AI Germany Centre for Cognitive Science Germany
Deep Reinforcement learning techniques are achieving state-of-the-art results in robust legged locomotion. While there exists a wide variety of legged platforms such as quadruped, humanoids, and hexapods, the field is... 详细信息
来源: 评论
BATS: Best Action Trajectory Stitching
arXiv
收藏 引用
arXiv 2022年
作者: Char, Ian Mehta, Viraj Villaflor, Adam Dolan, John M. Schneider, Jeff Department of Machine Learning Carnegie Mellon University United States Robotics Institute Carnegie Mellon University United States
The problem of offline reinforcement learning focuses on learning a good policy from a log of environment interactions. Past efforts for developing algorithms in this area have revolved around introducing constraints ... 详细信息
来源: 评论
Opening a lockbox through physical exploration
Opening a lockbox through physical exploration
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Manuel Baum Matthew Bernstein Roberto Martin-Martin Sebastian Höfer Johannes Kulick Marc Toussaint Alex Kacelnik Oliver Brock Robotics and Biology Lab (RBO) Technische Universität Berlin Machine Learning and Robotics Lab (MLR) Universität Stuttgart Department of Zoology Oxford University
How can we close the gap between animals and robots when it comes to intelligently interacting with the environment? On our quest for answers, we have investigated the problem of physically exploring complex mechanica... 详细信息
来源: 评论
Inferring capabilities by experimentation
arXiv
收藏 引用
arXiv 2017年
作者: Khadke, Ashwin Veloso, Manuela Robotics Institute Carnegie Mellon University United States Department of Machine Learning Carnegie Mellon University United States
We present an approach to enable an autonomous agent (learner) in building a model of a new unknown robot's (subject) performance at a task through experimentation. The subject's appearance can provide cues to... 详细信息
来源: 评论
TReR: A Lightweight Transformer Re-Ranking Approach for 3D LiDAR Place Recognition
TReR: A Lightweight Transformer Re-Ranking Approach for 3D L...
收藏 引用
International Conference on Intelligent Transportation
作者: Tiago Barros Luís Garrote Martin Aleksandrov Cristiano Premebida Urbano J. Nunes Department of Electrical and Computer Engineering University of Coimbra Institute of Systems and Robotics Portugal Dahlem Center for Machine Learning and Robotics Freie Universität Berlin Berlin
Autonomous driving systems often require reliable loop closure detection to guarantee reduced localization drift. Recently, 3D LiDAR-based localization methods have used retrieval-based place recognition to find revis...
来源: 评论
Long-Horizon Multi-Robot Rearrangement Planning for Construction Assembly
arXiv
收藏 引用
arXiv 2021年
作者: Hartmann, Valentin N. Orthey, Andreas Driess, Danny Oguz, Ozgur S. Toussaint, Marc Machine Learning & Robotics Lab University of Stuttgart Germany Learning and Intelligent Systems Group TU Berlin Germany Department of Computer Engineering Bilkent University Turkey
Robotic assembly planning enables architects to explicitly account for the assembly process during the design phase, and enables efficient building methods that profit from the robots' different capabilities. Prev... 详细信息
来源: 评论
Fast planning for dynamic preferences
Fast planning for dynamic preferences
收藏 引用
18th International Conference on Automated Planning and Scheduling, ICAPS 2008
作者: Ziebart, Brian D. Dey, Anind K. Bagnell, J. Andrew Machine Learning Department Carnegie Mellon University Pittsburgh PA 15213 United States Human-Computer Interaction Institute Carnegie Mellon University Pittsburgh PA 15213 United States Robotics Institute Carnegie Mellon University Pittsburgh PA 15213 United States
We present an algorithm that quickly finds optimal plans for unforeseen agent preferences within graph-based planning domains where actions have deterministic outcomes and action costs are linearly parameterized by pr... 详细信息
来源: 评论
TReR: A Lightweight Transformer Re-Ranking Approach for 3D LiDAR Place Recognition
arXiv
收藏 引用
arXiv 2023年
作者: Barros, Tiago Garrote, Luís Aleksandrov, Martin Premebida, Cristiano Nunes, Urbano J. The University of Coimbra Institute of Systems and Robotics Department of Electrical and Computer Engineering Portugal Dahlem Center for Machine Learning and Robotics Freie Universität Berlin Berlin Germany
Autonomous driving systems often require reliable loop closure detection to guarantee reduced localization drift. Recently, 3D LiDAR-based localization methods have used retrieval-based place recognition to find revis... 详细信息
来源: 评论