咨询与建议

限定检索结果

文献类型

  • 100 篇 会议
  • 76 篇 期刊文献

馆藏范围

  • 176 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 119 篇 工学
    • 76 篇 计算机科学与技术...
    • 71 篇 软件工程
    • 42 篇 控制科学与工程
    • 18 篇 生物工程
    • 17 篇 信息与通信工程
    • 17 篇 生物医学工程(可授...
    • 13 篇 机械工程
    • 12 篇 光学工程
    • 7 篇 仪器科学与技术
    • 6 篇 电气工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 5 篇 力学(可授工学、理...
    • 4 篇 交通运输工程
    • 4 篇 农业工程
    • 3 篇 材料科学与工程(可...
  • 71 篇 理学
    • 36 篇 数学
    • 26 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 14 篇 物理学
    • 9 篇 系统科学
  • 27 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
    • 4 篇 工商管理
  • 7 篇 法学
    • 7 篇 社会学
  • 6 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
  • 4 篇 农学
    • 4 篇 作物学
  • 2 篇 教育学
  • 1 篇 军事学

主题

  • 8 篇 reinforcement le...
  • 7 篇 robots
  • 7 篇 robot sensing sy...
  • 5 篇 object detection
  • 5 篇 hidden markov mo...
  • 4 篇 cameras
  • 4 篇 semantics
  • 4 篇 machine learning
  • 4 篇 laser radar
  • 4 篇 kinematics
  • 3 篇 safety
  • 3 篇 three-dimensiona...
  • 3 篇 markov processes
  • 3 篇 brain
  • 3 篇 learning algorit...
  • 3 篇 computational mo...
  • 3 篇 gradient methods
  • 3 篇 navigation
  • 3 篇 trajectory
  • 3 篇 feature extracti...

机构

  • 23 篇 machine learning...
  • 23 篇 robotics institu...
  • 13 篇 machine learning...
  • 12 篇 robotics institu...
  • 10 篇 machine learning...
  • 8 篇 center for neuro...
  • 8 篇 lamarr institute...
  • 7 篇 robotics institu...
  • 7 篇 machine learning...
  • 6 篇 center for robot...
  • 6 篇 neurotechnology ...
  • 5 篇 center for techn...
  • 4 篇 the department o...
  • 4 篇 the lamarr insti...
  • 4 篇 neuroscience and...
  • 4 篇 neuroscience res...
  • 4 篇 robotics institu...
  • 4 篇 dahlem center fo...
  • 3 篇 department of en...
  • 3 篇 honda r&d co. lt...

作者

  • 27 篇 schneider jeff
  • 11 篇 jeff schneider
  • 10 篇 stachniss cyrill
  • 8 篇 neiswanger willi...
  • 8 篇 mehta viraj
  • 7 篇 char ian
  • 5 篇 behley jens
  • 5 篇 gordon geoffrey ...
  • 5 篇 zhang yi
  • 5 篇 huang tzu-kuo
  • 5 篇 gordleeva susann...
  • 4 篇 sami haddadin
  • 4 篇 gupta saurabh
  • 4 篇 savosenkov andre...
  • 4 篇 chung youngseog
  • 4 篇 guadagnino tizia...
  • 4 篇 udoratina anna
  • 4 篇 grigorev nikita
  • 4 篇 marc toussaint
  • 4 篇 xiong liang

语言

  • 164 篇 英文
  • 12 篇 其他
检索条件"机构=Department of Machine Learning and Robotics"
176 条 记 录,以下是61-70 订阅
排序:
Transcranial magnetic stimulation affects response time in decision-making tasks  4
Transcranial magnetic stimulation affects response time in d...
收藏 引用
4th International Conference "Neurotechnologies and Neurointerfaces", CNN 2022
作者: Grigorev, Nikita Savosenkov, Andrey Udoratina, Anna Kolchina, Anna Maksimenko, Vladimir Gordleeva, Susanna Lobachevsky State University of Nizhny Novgorod Neurotechnology Department Nizhny Novgorod Russia Immanuel Kant Baltic Federal University Center for Neurotechnology and Machine Learning Kaliningrad Russia Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis Russia Lobachevsky State University of Nizhny Novgorod Mathematics and Mechanics Department Nizhny Novgorod Russia Neuroscience and Cognitive Technology Lab. Innopolis University Innopolis Russia
In this study, we investigate how excitatory transcranial magnetic stimulation (TMS) can influence decision speed in the task of classifying ambiguous visual patterns. 30 healthy volunteers were divided into 2 groups.... 详细信息
来源: 评论
Context-Based Meta Reinforcement learning for Robust and Adaptable Peg-in-Hole Assembly Tasks
arXiv
收藏 引用
arXiv 2024年
作者: Shokry, Ahmed Gomaa, Walid Zaenker, Tobias Dawood, Murad Maged, Shady A. Awad, Mohammed I. Bennewitz, Maren Humanoid Robots Lab University of Bonn the Center for Robotics Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence Bonn Germany Cyber Physical Systems Lab Egypt Japan University of Science and Technology Alexandria Egypt Faculty of Engineering Alexandria University Alexandria Egypt Mechatronics Department Ain Shams University Cairo Egypt
Peg-in-hole assembly in unknown environments is a challenging task due to onboard sensor errors, which result in uncertainty and variations in task parameters such as the hole position and orientation. Meta Reinforcem... 详细信息
来源: 评论
Systematic Literature Review on Industry Revolution 4.0 to Predict Maintenance and Life Time of machines in Manufacturing Industry
Systematic Literature Review on Industry Revolution 4.0 to P...
收藏 引用
Artificial Intelligence and Smart Systems (ICAIS), International Conference on
作者: Sowmya P Sathish Kumar Ravichandran Rakshitha Department of Robotics and Artificial Intelligence NMAM Institute of Technology-Affiliated to NITTE(Deemed to be University) Nitte Karnataka India Department of Computer Science School of Engineering & Technology Christ University Bangalore Karnataka India Department of Artificial Intelligence and Machine Learning NMAM Institute of Technology-Affiliated to NITTE(Deemed to be University) Nitte Karnataka India
Industry 4.0 is digitized revolution for manufacturers or companies where in new technologies are imbibed into their production system for their day-to-day operations or activities. So that their overall economic need... 详细信息
来源: 评论
Anterior TMS Speeds up Responses in Perceptual Decision-making Task  6
Anterior TMS Speeds up Responses in Perceptual Decision-maki...
收藏 引用
6th Scientific School "Dynamics of Complex Networks and their Applications", DCNA 2022
作者: Maksimenko, Vladimir Gordleeva, Susanna Grigorev, Nikita Savosenkov, Andrey Kuc, Alexander Udoratina, Anna Grubov, Vadim Kolchina, Anna Kurkin, Semen Kazantsev, Victor Hramov, Alexander Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis Russia Mathematics and Mechanics Department Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University Kaliningrad Russia Neurotechnology Department Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod Russia Neuroscience and Cognitive Technology Lab. Innopolis University Innopolis Russia Nizhny Novgorod Russia
Our preliminary behavioral experiments suggest that the response time decreases when subjects respond to the repeatedly presented visual stimuli. A potential explanation is that the brain preactivates neural ensembles... 详细信息
来源: 评论
Regression with comparisons: escaping the curse of dimensionality with ordinal information
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2020年 第1期21卷 6480-6533页
作者: Yichong Xu Sivaraman Balakrishnan Aarti Singh Artur Dubrawski Machine Learning Department Department of Statistics and Data Science Machine Learning Department Auton Lab The Robotics Institute Carnegie Mellon University Pittsburgh PA
In supervised learning, we typically leverage a fully labeled dataset to design methods for function estimation or prediction. In many practical situations, we are able to obtain alternative feedback, possibly at a lo... 详细信息
来源: 评论
Long-Horizon Multi-Robot Rearrangement Planning for Construction Assembly
arXiv
收藏 引用
arXiv 2021年
作者: Hartmann, Valentin N. Orthey, Andreas Driess, Danny Oguz, Ozgur S. Toussaint, Marc Machine Learning & Robotics Lab University of Stuttgart Germany Learning and Intelligent Systems Group TU Berlin Germany Department of Computer Engineering Bilkent University Turkey
Robotic assembly planning enables architects to explicitly account for the assembly process during the design phase, and enables efficient building methods that profit from the robots' different capabilities. Prev... 详细信息
来源: 评论
Exploration via Planning for Information about the Optimal Trajectory
arXiv
收藏 引用
arXiv 2022年
作者: Mehta, Viraj Char, Ian Abbate, Joseph Conlin, Rory Boyer, Mark D. Ermon, Stefano Schneider, Jeff Neiswanger, Willie Robotics Institute United States Machine Learning Department Carnegie Mellon University United States Princeton Plasma Physics Laboratory United States Princeton University United States Computer Science Department Stanford University United States
Many potential applications of reinforcement learning (RL) are stymied by the large numbers of samples required to learn an effective policy. This is especially true when applying RL to real-world control tasks, e.g. ... 详细信息
来源: 评论
Changing functional connectivity during solving cognitive tasks: fNIRS study
Changing functional connectivity during solving cognitive ta...
收藏 引用
Saratov Fall Meeting 2021: Computational Biophysics and Nanobiophotonics
作者: Badarin, A.A. Antipov, V.M. Grubov, V.V. Kurkin, S.A. Neuroscience and Cognivite Technology Laboratory Center for Technologies in Robotics and Mechatronics Components Innopolis University Universitetskaya Str. 1 Innopolis 420500 Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University A. Nevskogo ul. 14 Kaliningrad236016 Russia Department of Theoretical Cybernetics Saint Petersburg State University University Embankment 7/9 Saint Petersburg199034 Russia
In this paper, we present an analysis of the dynamics of functional connectivity of the cerebral cortical network using near-infrared spectroscopy during human solutions to simple cognitive tasks. A task-based on the ... 详细信息
来源: 评论
WCEBleedGen: A wireless capsule endoscopy dataset and its benchmarking for automatic bleeding classification, detection, and segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Handa, Palak Dhir, Manas Mahbod, Amirreza Schwarzhans, Florian Woitek, Ramona Goel, Nidhi Gunjan, Deepak Research Center for Medical Image Analysis and Artificial Intelligence Department of Medicine Danube Private University Krems Austria Department of Artificial Intelligence and Machine Learning University School of Automation and Robotics Guru Gobind Singh Indraprastha University Delhi India Department of Electronics and Communication Engineering Indira Gandhi Delhi Technical University for Women Delhi India Department of Gastroenterology HNU All India Institute of Medical Sciences Delhi India
Objective: Computer-based analysis of Wireless Capsule Endoscopy (WCE) is crucial. However, a medically annotated WCE dataset for training and evaluation of automatic classification, detection, and segmentation of ble... 详细信息
来源: 评论
SENSORIMOTOR GRAPH: Action-conditioned graph neural network for learning robotic soft hand dynamics
arXiv
收藏 引用
arXiv 2021年
作者: Almeida, João Damião Mano Schydlo, Paul Dehban, Atabak Santos-Victor, José Institute for Systems and Robotics Instituto Superior Técnico University of Lisbon Machine Learning Department Carnegie Mellon University United States
Soft robotics is a thriving branch of robotics which takes inspiration from nature and uses affordable flexible materials to design adaptable non-rigid robots. However, their flexible behavior makes these robots hard ... 详细信息
来源: 评论