咨询与建议

限定检索结果

文献类型

  • 107 篇 会议
  • 59 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 170 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 111 篇 工学
    • 75 篇 计算机科学与技术...
    • 63 篇 软件工程
    • 29 篇 光学工程
    • 22 篇 信息与通信工程
    • 18 篇 机械工程
    • 16 篇 生物医学工程(可授...
    • 14 篇 生物工程
    • 13 篇 仪器科学与技术
    • 13 篇 控制科学与工程
    • 5 篇 电气工程
    • 5 篇 化学工程与技术
    • 5 篇 安全科学与工程
    • 4 篇 建筑学
    • 3 篇 电子科学与技术(可...
    • 3 篇 土木工程
  • 68 篇 理学
    • 31 篇 数学
    • 28 篇 物理学
    • 18 篇 生物学
    • 8 篇 统计学(可授理学、...
    • 5 篇 化学
    • 3 篇 系统科学
  • 26 篇 管理学
    • 16 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 8 篇 医学
    • 8 篇 临床医学
    • 7 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
  • 6 篇 艺术学
    • 6 篇 设计学(可授艺术学...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 法学
    • 2 篇 社会学

主题

  • 23 篇 pattern recognit...
  • 14 篇 computer vision
  • 12 篇 feature extracti...
  • 11 篇 image segmentati...
  • 9 篇 machine vision
  • 8 篇 laboratories
  • 8 篇 visualization
  • 8 篇 training
  • 7 篇 clustering algor...
  • 6 篇 neural networks
  • 6 篇 face recognition
  • 5 篇 handwriting reco...
  • 5 篇 databases
  • 5 篇 semantics
  • 5 篇 image recognitio...
  • 5 篇 robustness
  • 4 篇 computer science
  • 4 篇 object detection
  • 4 篇 support vector m...
  • 4 篇 convolution

机构

  • 9 篇 department of co...
  • 9 篇 machine vision a...
  • 9 篇 xiamen key labor...
  • 7 篇 national laborat...
  • 7 篇 department of in...
  • 6 篇 machine vision a...
  • 6 篇 shenzhen key lab...
  • 5 篇 machine vision a...
  • 4 篇 fujian key labor...
  • 4 篇 school of artifi...
  • 4 篇 centre for patte...
  • 3 篇 laboratory for i...
  • 3 篇 machine vision a...
  • 3 篇 computer vision ...
  • 3 篇 l3i laboratory u...
  • 3 篇 department of co...
  • 3 篇 tauh eye center ...
  • 3 篇 machine vision a...
  • 3 篇 university of ch...
  • 3 篇 department of co...

作者

  • 12 篇 kälviäinen heikk...
  • 11 篇 lensu lasse
  • 9 篇 liu xin
  • 9 篇 eerola tuomas
  • 8 篇 lasse lensu
  • 7 篇 ming dong
  • 7 篇 joni-kristian ka...
  • 6 篇 c.y. suen
  • 5 篇 manjeet rege
  • 5 篇 kamarainen joni-...
  • 5 篇 nepovinnykh ekat...
  • 5 篇 liu jianzhuang
  • 5 篇 dong ming
  • 4 篇 l. lensu
  • 4 篇 heikki kälviäine...
  • 4 篇 horak karel
  • 4 篇 tang xiaoou
  • 4 篇 zhao guoying
  • 3 篇 p. oittinen
  • 3 篇 bilik simon

语言

  • 160 篇 英文
  • 7 篇 其他
  • 3 篇 中文
检索条件"机构=Department of Machine Vision and Pattern Recognition Laboratory"
170 条 记 录,以下是141-150 订阅
排序:
Localized Support Vector machines for Classification
Localized Support Vector Machines for Classification
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Ming Dong Jing Wu Machine Vision and Pattern Recognition Laboratory Department of Computer Science Wayne State University Detroit MI USA
Support vector machines (SVMs) have been promising methods in pattern recognition because of their solid mathematical foundation. In this paper, we propose a localized SVM classification scheme (LSVM). In which we fir... 详细信息
来源: 评论
Region-based Image Annotation using Asymmetrical Support Vector machine-based Multiple-Instance Learning
Region-based Image Annotation using Asymmetrical Support Vec...
收藏 引用
Conference on Computer vision and pattern recognition (CVPR)
作者: Changbo Yang Ming Dong Jing Hua Machine Vision and Pattern Recognition Laboratory Department of Computer Science Wayne State University Detroit MI USA Department of Computer Science Wayne State University Detroit MI USA
In region-based image annotation, keywords are usually associated with images instead of individual regions in the training data set. This poses a major challenge for any learning strategy. In this paper, we formulate... 详细信息
来源: 评论
Co-Clustering Image Features and Semantic Concepts
Co-Clustering Image Features and Semantic Concepts
收藏 引用
IEEE International Conference on Image Processing
作者: Manjeet Rege Ming Dong Farshad Fotouhi Department of Computer Science Machine Vision & Pattern Recognition Laboratory Wayne State University Detroit MI USA Database & Multimedia Systems Group Wayne State University Detroit MI USA
In this paper, we present a novel idea of co-clustering image features and semantic concepts. We accomplish this by modelling user feedback logs and low-level features using a bipartite graph. Our experiments demonstr... 详细信息
来源: 评论
Finding a Semantic Structure Interactively in Image Databases
Finding a Semantic Structure Interactively in Image Database...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Manjeet Rege Ming Dong Farshad Fotouhi Machine Vision & Pattern Recognition Laboratory Department of Computer Science Wayne State University Detroit MI USA Database & Multimedia Systems Group Department of Computer Science Wayne State University Detroit MI USA
We present a new approach to organize an image database by finding a semantic structure interactively based on multi-user relevance feedback. By treating user relevance feedbacks as weak classifiers and combining them... 详细信息
来源: 评论
Co-clustering Documents and Words Using Bipartite Isoperimetric Graph Partitioning
Co-clustering Documents and Words Using Bipartite Isoperimet...
收藏 引用
IEEE International Conference on Data Mining (ICDM)
作者: Manjeet Rege Ming Dong Farshad Fotouhi Machine Vision and Pattern Recognition Laboratory Database and Multimedia Systems GroupDepartment of Computer Science Wayne State University Detroit MI USA Database and Multimedia Systems Group Database and Multimedia Systems GroupDepartment of Computer Science Wayne State University Detroit MI USA
In this paper, we present a novel graph theoretic approach to the problem of document-word co-clustering. In our approach, documents and words are modeled as the two vertices of a bipartite graph. We then propose isop... 详细信息
来源: 评论
A threshlod selection method based on multiscale and graylevel co-occurrence matrix analysis
A threshlod selection method based on multiscale and graylev...
收藏 引用
International Conference on Document Analysis and recognition
作者: Yun Li Mohamed Cheriet C.Y. Suen GM606 Center for Pattern Recognition and Machine Intelligence Concordia University Montreal QUE Canada Laboratory for Imagery Vision and Artificial Intelligence Ecole de Technologie Supérieure University of Quebec Montreal QUE Canada
Noise and complex backgrounds often make the thresholding of degraded document images difficult. In this paper, we propose a new threshold selection method to handle severely degraded document images. First, multiscal... 详细信息
来源: 评论
A threshlod selection method based on multiscale and graylevel co-occurrence matrix analysis
A threshlod selection method based on multiscale and graylev...
收藏 引用
8th International Conference on Document Analysis and recognition
作者: Li, Yun Cheriet, Mohamed Suen, Ching Y. Center for Pattern Recognition and Machine Intelligence Concordia University GM606 1455 de Maisonneuve Blvd. West Montreal Que. H3G 1M8 Canada Laboratory for Imagery Vision and Artificial Intelligence Ecole de Technologie Supérieure University of Quebec 1100 Notre-Dame West Montreal Que. H3C 1K3 Canada
Noises and complex backgrounds often make the thresholding of degraded document images a difficult job. In this paper, we propose a new threshold selection method to handle severely degraded document images. First, mu... 详细信息
来源: 评论
A segmentation method for touching italic characters
A segmentation method for touching italic characters
收藏 引用
International Conference on pattern recognition
作者: Yun Li S. Naoi M. Cheriet C.Y. Suen Center of Pattern Recognition and Machine Intelligence Concordia University Montreal QUE Canada Document Processing Laboratory Fujitsu Laboratories Limited Kawasaki Japan Laboratory for Imagery Vision and Artificial Intelligence Ecole de Technologie Supérieure University of Quebec Montreal QUE Canada
Segmentation is an essential part of a recognition system. It is difficult to handle touching characters, especially for italic fonts. We present a method to achieve the accurate segmentation of touching italic charac... 详细信息
来源: 评论
Classifiability based omnivariate decision trees
Classifiability based omnivariate decision trees
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Y. Li M. Dong Machine Vision and Pattern Recognition Laboratory Department of Computer Science Wayne State University Detroit MI USA
Decision trees represent a simple and powerful method of induction from labeled examples. Univariate decision trees consider the value of a single attribute at each node, leading to the splits that are parallel to the... 详细信息
来源: 评论
Communication via eye blinks and eyebrow raises: Video-based human-computer interfaces
收藏 引用
Universal Access in the Information Society 2003年 第4期2卷 359-373页
作者: Grauman, K. Betke, M. Lombardi, J. Gips, J. Bradski, G.R. Vision Interface Group AI Laboratory Massachusetts Institute of Technology 77 Massachusetts Avenue CambridgeMA02139 United States Computer Science Department Boston University 111 Cummington St BostonMA02215 United States EagleEyes Computer Science Department Boston College Fulton Hall Chestnut HillMA02467 United States Vision Graphics and Pattern Recognition Microcomputer Research Laboratory Intel Corporation SC12-303 2200 Mission College Blvd Santa ClaraCA95054-1537 United States
Two video-based human-computer interaction tools are introduced that can activate a binary switch and issue a selection command. "BlinkLink," as the first tool is called, automatically detects a user's e... 详细信息
来源: 评论