咨询与建议

限定检索结果

文献类型

  • 107 篇 会议
  • 57 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 168 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 110 篇 工学
    • 74 篇 计算机科学与技术...
    • 63 篇 软件工程
    • 29 篇 光学工程
    • 22 篇 信息与通信工程
    • 18 篇 机械工程
    • 16 篇 生物医学工程(可授...
    • 14 篇 生物工程
    • 13 篇 仪器科学与技术
    • 13 篇 控制科学与工程
    • 5 篇 电气工程
    • 5 篇 化学工程与技术
    • 5 篇 安全科学与工程
    • 4 篇 建筑学
    • 3 篇 电子科学与技术(可...
    • 3 篇 土木工程
  • 68 篇 理学
    • 31 篇 数学
    • 28 篇 物理学
    • 18 篇 生物学
    • 8 篇 统计学(可授理学、...
    • 5 篇 化学
    • 3 篇 系统科学
  • 26 篇 管理学
    • 16 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 8 篇 医学
    • 8 篇 临床医学
    • 7 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
  • 6 篇 艺术学
    • 6 篇 设计学(可授艺术学...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 法学
    • 2 篇 社会学

主题

  • 23 篇 pattern recognit...
  • 14 篇 computer vision
  • 12 篇 feature extracti...
  • 11 篇 image segmentati...
  • 9 篇 machine vision
  • 8 篇 laboratories
  • 8 篇 visualization
  • 8 篇 training
  • 7 篇 clustering algor...
  • 6 篇 neural networks
  • 6 篇 face recognition
  • 5 篇 handwriting reco...
  • 5 篇 databases
  • 5 篇 semantics
  • 5 篇 image recognitio...
  • 5 篇 robustness
  • 4 篇 computer science
  • 4 篇 object detection
  • 4 篇 support vector m...
  • 4 篇 convolution

机构

  • 9 篇 machine vision a...
  • 8 篇 department of co...
  • 8 篇 xiamen key labor...
  • 7 篇 national laborat...
  • 7 篇 department of in...
  • 6 篇 machine vision a...
  • 6 篇 shenzhen key lab...
  • 5 篇 machine vision a...
  • 4 篇 school of artifi...
  • 4 篇 centre for patte...
  • 3 篇 laboratory for i...
  • 3 篇 machine vision a...
  • 3 篇 computer vision ...
  • 3 篇 l3i laboratory u...
  • 3 篇 fujian key labor...
  • 3 篇 department of co...
  • 3 篇 tauh eye center ...
  • 3 篇 machine vision a...
  • 3 篇 university of ch...
  • 3 篇 department of co...

作者

  • 12 篇 kälviäinen heikk...
  • 11 篇 lensu lasse
  • 9 篇 liu xin
  • 9 篇 eerola tuomas
  • 8 篇 lasse lensu
  • 7 篇 ming dong
  • 7 篇 joni-kristian ka...
  • 6 篇 c.y. suen
  • 5 篇 manjeet rege
  • 5 篇 kamarainen joni-...
  • 5 篇 nepovinnykh ekat...
  • 5 篇 liu jianzhuang
  • 5 篇 dong ming
  • 4 篇 l. lensu
  • 4 篇 heikki kälviäine...
  • 4 篇 horak karel
  • 4 篇 tang xiaoou
  • 4 篇 zhao guoying
  • 3 篇 p. oittinen
  • 3 篇 bilik simon

语言

  • 160 篇 英文
  • 5 篇 其他
  • 3 篇 中文
检索条件"机构=Department of Machine Vision and Pattern Recognition Laboratory"
168 条 记 录,以下是31-40 订阅
排序:
PON: Proposal Optimization Network for Temporal Action Proposal Generation  16th
PON: Proposal Optimization Network for Temporal Action Propo...
收藏 引用
16th International Conference on Intelligent Computing, ICIC 2020
作者: Peng, Xiaoxiao Du, Jixiang Zhang, Hongbo Department of Computer Science and Technology Huaqiao University Quanzhou China Fujian Key Laboratory of Big Data Intelligence and Security Huaqiao University Quanzhou China Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao University Quanzhou China
Temporal action localization is a challenging task in video understanding. Although great progress has been made in temporal action localization, the most advanced methods still have the problem of sharp performance d... 详细信息
来源: 评论
NORPPA: NOvel Ringed seal re-identification by Pelage pattern Aggregation
arXiv
收藏 引用
arXiv 2022年
作者: Nepovinnykh, Ekaterina Chelak, Ilia Eerola, Tuomas Kälviäinen, Heikki Computer Vision and Pattern Recognition Laboratory Department of Computational Engineering School of Engineering Science Lappeenranta-Lahti University of Technology Lut P.O.Box 20 Lappeenranta53851 Finland Department of Computer Science Faculty of Science University of Helsinki P.O. Box 4 Helsinki00100 Finland
We propose a method for Saimaa ringed seal (Pusa hispida saimensis) re-identification. Access to large image volumes through camera trapping and crowdsourcing provides novel possibilities for animal monitoring and con... 详细信息
来源: 评论
Even big data is not enough: need for a novel reference modelling for forensic document authentication
Even big data is not enough: need for a novel reference mode...
收藏 引用
作者: Garain, Utpal Halder, Biswajit Computer Vision and Pattern Recognition Unit and Centre for Artificial Intelligence and Machine Learning Indian Statistical Institute 203 B. T. Road Kolkata700108 India Department of CSE Narula Institute of Technology Agarpara Kolkata700109 India
With the emergence of big data, deep learning (DL) approaches are becoming quite popular in many branches of science. Forensic science is no longer an exception. However, there are certain problems in forensic science... 详细信息
来源: 评论
Multi-Unit Floor Plan recognition and Reconstruction Using Improved Semantic Segmentation of Raster-Wise Floor Plans
arXiv
收藏 引用
arXiv 2024年
作者: Kratochvila, Lukas de Jong, Gijs Arkesteijn, Monique Bilík, Šimon Zemčík, Tomáš Horak, Karel Rellermeyer, Jan S. Department of Control and Instrumentation Faculty of Electrical Engineering and Communication Brno University of Technology Brno Czech Republic Department of Software Technology Faculty of Electrical Engineering Mathematics and Computer Science TU Delft Delft Netherlands Department of Management in the Built Environment Faculty of Architecture and the Built Environment TU Delft Delft Netherlands Computer Vision and Pattern Recognition Laboratory Department of Computational Engineering Lappeenranta-Lahti University of Technology LUT Lappeenranta Finland Dependable and Scalable Software Systems Institute of Systems Engineering Faculty of Electrical Engineering and Computer Science Leibniz University Hannover Hannover Germany
Digital twins have a major potential to form a significant part of urban management in emergency planning, as they allow more efficient designing of the escape routes, better orientation in exceptional situations, and... 详细信息
来源: 评论
Survey on Deep Face Restoration: From Non-blind to Blind and Beyond
arXiv
收藏 引用
arXiv 2023年
作者: Li, Wenjie Wang, Mei Zhang, Kai Li, Juncheng Li, Xiaoming Zhang, Yuhang Gao, Guangwei Deng, Weihong Lin, Chia-Wen The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China The Computer Vision Lab ETH Zürich Zürich Switzerland The School of Communication and Information Engineering Shanghai University Shanghai China The Nanyang Technological University Singapore The Intelligent Visual Information Perception Laboratory Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing China The Department of Electrical Engineering National Tsing Hua University Hsinchu Taiwan
Face restoration (FR) is a specialized field within image restoration that aims to recover low-quality (LQ) face images into high-quality (HQ) face images. Recent advances in deep learning technology have led to signi... 详细信息
来源: 评论
NTIRE 2023 Image Shadow Removal Challenge Report
NTIRE 2023 Image Shadow Removal Challenge Report
收藏 引用
2023 IEEE/CVF Conference on Computer vision and pattern recognition Workshops, CVPRW 2023
作者: Vasluianu, Florin-Alexandru Seizinger, Tim Timofte, Radu Cui, Shuhao Huang, Junshi Tian, Shuman Fan, Mingyuan Zhang, Jiaqi Zhu, Li Wei, Xiaoming Wei, Xiaolin Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjölund, Jens Schön, Thomas B. Dong, Xiaoyi Zhang, Xi Sheryl Li, Chenghua Leng, Cong Yeo, Woon-Ha Oh, Wang-Taek Lee, Yeo-Reum Ryu, Han-Cheol Luo, Jinting Jiang, Chengzhi Han, Mingyan Wu, Qi Lin, Wenjie Yu, Lei Li, Xinpeng Jiang, Ting Fan, Haoqiang Liu, Shuaicheng Xu, Shuning Song, Binbin Chen, Xiangyu Zhang, Shile Zhou, Jiantao Zhang, Zhao Zhao, Suiyi Zheng, Huan Gao, Yangcheng Wei, Yanyan Wang, Bo Ren, Jiahuan Luo, Yan Kondo, Yuki Miyata, Riku Yasue, Fuma Naruki, Taito Ukita, Norimichi Chang, Hua-En Yang, Hao-Hsiang Chen, Yi-Chung Chiang, Yuan-Chun Huang, Zhi-Kai Chen, Wei-Ting Chen, I-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Xianwei, Li Fu, Huiyuan Liu, Chunlin Ma, Huadong Fu, Binglan He, Huiming Wang, Mengjia She, Wenxuan Liu, Yu Nathan, Sabari Kansal, Priya Zhang, Zhongjian Yang, Huabin Wang, Yan Zhang, Yanru Phutke, Shruti S. Kulkarni, Ashutosh Khan, Md Raqib Murala, Subrahmanyam Vipparthi, Santosh Kumar Ye, Heng Liu, Zixi Yang, Xingyi Liu, Songhua Wu, Yinwei Jing, Yongcheng Yu, Qianhao Zheng, Naishan Huang, Jie Long, Yuhang Yao, Mingde Zhao, Feng Zhao, Bowen Ye, Nan Shen, Ning Cao, Yanpeng Xiong, Tong Xia, Weiran Li, Dingwen Xia, Shuchen Computer Vision Lab Ifi Caidas University of Würzburg Germany Computer Vision Lab Eth Zürich Switzerland Meituan Group China Department of Information Technology Uppsala University Sweden Institute of Automation Chinese Academy of Sciences Beijing China Nanjing China Maicro Nanjing China Department of Artificial Intelligence Convergence Sahmyook University Seoul Korea Republic of Megvii Technology China University of Electronic Science and Technology of China China University of Macau China China Toyota Technological Institute Japan Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States Beijing University of Post and Teleconmunication Beijing China Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education China Couger Inc. Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar Punjab Rupnagar India Research Institute Singapore National University of Singapore Singapore Research Institute Singapore University of Sydney Australia Brain-Inspired Vision Laboratory Information Science and Technology Institution University of Science and Technology of China China State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou310027 China Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou310027 China South China University of Technology China
This work reviews the results of the NTIRE 2023 Challenge on Image Shadow Removal. The described set of solutions were proposed for a novel dataset, which captures a wide range of object-light interactions. It consist... 详细信息
来源: 评论
Evaluation of Unconditioned Deep Generative Synthesis of Retinal Images  20th
Evaluation of Unconditioned Deep Generative Synthesis of Ret...
收藏 引用
20th International Conference on Advanced Concepts for Intelligent vision Systems, ACIVS 2020
作者: Kaplan, Sinan Lensu, Lasse Laaksonen, Lauri Uusitalo, Hannu Computer Vision and Pattern Recognition Laboratory Lappeenranta-Lahti University of Technology LUT P.O. Box 20 Lappeenranta53850 Finland Department of Ophthalmology Faculty of Health and Biotechnology Tampere University and Tays Eye Center Tampere Finland
Retinal images have been increasingly important in clinical diagnostics of several eye and systemic diseases. To help the medical doctors in this work, automatic and semi-automatic diagnosis methods can be used to inc... 详细信息
来源: 评论
EFFICIENT ONLINE LABEL CONSISTENT HASHING FOR LARGE-SCALE CROSS-MODAL RETRIEVAL
EFFICIENT ONLINE LABEL CONSISTENT HASHING FOR LARGE-SCALE CR...
收藏 引用
2021 IEEE International Conference on Multimedia and Expo, ICME 2021
作者: Yi, Jinhan Liu, Xin Cheung, Yiu-Ming Xu, Xing Fan, Wentao He, Yi Department of Computer Science and Technology Huaqiao University Xiamen361021 China Xiamen Key Lab. of Computer Vision and Pattern Recognition Fujian Key Lab. of Big Data Intelligence and Security China Department of Computer Science Hong Kong Baptist University Kowloon Hong Kong School of Computer Science and Engineering University of Electronic Science and Technology of China China Provincial Key Laboratory for Computer Information Processing Technology Soochow University China
Existing cross-modal hashing still faces three challenges: (1) Most batch-based methods are unsuitable for processing large-scale and streaming data. (2) Current online methods often suffer from insufficient semantic ... 详细信息
来源: 评论
machine Learning and Computer vision Techniques in Continuous Beehive Monitoring Applications: A Survey
arXiv
收藏 引用
arXiv 2022年
作者: Bilik, Simon Zemcik, Tomas Kratochvila, Lukas Ricanek, Dominik Richter, Miloslav Zambanini, Sebastian Horak, Karel Department of Control and Instrumentation Faculty of Electrical Engineering and Communication Brno University of Technology Technická 3058/10 Brno61600 Czech Republic Computer Vision and Pattern Recognition Laboratory Department of Computational Engineering Lappeenranta-Lahti University of Technology LUT Yliopistonkatu 34 Lappeenranta53850 Finland Computer Vision Lab Institute of Visual Computing & Human-Centered Technology Faculty of Informatics TU Wien Favoritenstr. 9/193-1 ViennaA-1040 Austria
Wide use and availability of machine learning and computer vision techniques allows development of relatively complex monitoring systems in many domains. Besides the traditional industrial domain, new applications app... 详细信息
来源: 评论
Unsupervised Learning of Depth and Pose Based on Monocular Camera and Inertial Measurement Unit (IMU)
Unsupervised Learning of Depth and Pose Based on Monocular C...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Yanbo Wang Hanwen Yang Jianwei Cai Guangming Wang Jingchuan Wang Yi Huang University of Michigan-Shanghai Jiao Tong University Joint Institute Shanghai Jiao Tong University Shanghai China School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Department of Automation Shanghai Jiao Tong University Shanghai China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai Weitong Vision Technology Co. Ltd.
The main content of the research in this paper is the estimation of depth and pose based on monocular vision and Inertial Measurement Unit (IMU). The usual depth estimation network and pose estimation network require ...
来源: 评论