咨询与建议

限定检索结果

文献类型

  • 107 篇 会议
  • 57 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 168 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 110 篇 工学
    • 74 篇 计算机科学与技术...
    • 63 篇 软件工程
    • 29 篇 光学工程
    • 22 篇 信息与通信工程
    • 18 篇 机械工程
    • 16 篇 生物医学工程(可授...
    • 14 篇 生物工程
    • 13 篇 仪器科学与技术
    • 13 篇 控制科学与工程
    • 5 篇 电气工程
    • 5 篇 化学工程与技术
    • 5 篇 安全科学与工程
    • 4 篇 建筑学
    • 3 篇 电子科学与技术(可...
    • 3 篇 土木工程
  • 68 篇 理学
    • 31 篇 数学
    • 28 篇 物理学
    • 18 篇 生物学
    • 8 篇 统计学(可授理学、...
    • 5 篇 化学
    • 3 篇 系统科学
  • 26 篇 管理学
    • 16 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 8 篇 医学
    • 8 篇 临床医学
    • 7 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
  • 6 篇 艺术学
    • 6 篇 设计学(可授艺术学...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 法学
    • 2 篇 社会学

主题

  • 23 篇 pattern recognit...
  • 14 篇 computer vision
  • 12 篇 feature extracti...
  • 11 篇 image segmentati...
  • 9 篇 machine vision
  • 8 篇 laboratories
  • 8 篇 visualization
  • 8 篇 training
  • 7 篇 clustering algor...
  • 6 篇 neural networks
  • 6 篇 face recognition
  • 5 篇 handwriting reco...
  • 5 篇 databases
  • 5 篇 semantics
  • 5 篇 image recognitio...
  • 5 篇 robustness
  • 4 篇 computer science
  • 4 篇 object detection
  • 4 篇 support vector m...
  • 4 篇 convolution

机构

  • 9 篇 machine vision a...
  • 8 篇 department of co...
  • 8 篇 xiamen key labor...
  • 7 篇 national laborat...
  • 7 篇 department of in...
  • 6 篇 machine vision a...
  • 6 篇 shenzhen key lab...
  • 5 篇 machine vision a...
  • 4 篇 school of artifi...
  • 4 篇 centre for patte...
  • 3 篇 laboratory for i...
  • 3 篇 machine vision a...
  • 3 篇 computer vision ...
  • 3 篇 l3i laboratory u...
  • 3 篇 fujian key labor...
  • 3 篇 department of co...
  • 3 篇 tauh eye center ...
  • 3 篇 machine vision a...
  • 3 篇 university of ch...
  • 3 篇 department of co...

作者

  • 12 篇 kälviäinen heikk...
  • 11 篇 lensu lasse
  • 9 篇 liu xin
  • 9 篇 eerola tuomas
  • 8 篇 lasse lensu
  • 7 篇 ming dong
  • 7 篇 joni-kristian ka...
  • 6 篇 c.y. suen
  • 5 篇 manjeet rege
  • 5 篇 kamarainen joni-...
  • 5 篇 nepovinnykh ekat...
  • 5 篇 liu jianzhuang
  • 5 篇 dong ming
  • 4 篇 l. lensu
  • 4 篇 heikki kälviäine...
  • 4 篇 horak karel
  • 4 篇 tang xiaoou
  • 4 篇 zhao guoying
  • 3 篇 p. oittinen
  • 3 篇 bilik simon

语言

  • 160 篇 英文
  • 5 篇 其他
  • 3 篇 中文
检索条件"机构=Department of Machine Vision and Pattern Recognition Laboratory"
168 条 记 录,以下是81-90 订阅
排序:
Using low-quality video sequences for fish detection and tracking
Using low-quality video sequences for fish detection and tra...
收藏 引用
2016 SAI Computing Conference, SAI 2016
作者: Lantsova, Ekaterina Voitiuk, Tatiana Zudilova, Tatiana Victorovna Kaarna, Arto Saint Petersburg State University of Information Technologies Mechanics and Optics ITMO Department of Infocommunication Technologies St.-Petersburg Russia Lappeenranta University of Technology School of Computational Engineering Machine Vision and Pattern Recognition Lab Lappeenranta Finland
This study demonstrates computational methods for the automatic detection and tracking of fish from video sequences. The research in this subject is very important especially in fish farming companies and for nature p... 详细信息
来源: 评论
Author Correction: Federated learning enables big data for rare cancer boundary detection
收藏 引用
Nature communications 2023年 第1期14卷 436页
作者: Sarthak Pati Ujjwal Baid Brandon Edwards Micah Sheller Shih-Han Wang G Anthony Reina Patrick Foley Alexey Gruzdev Deepthi Karkada Christos Davatzikos Chiharu Sako Satyam Ghodasara Michel Bilello Suyash Mohan Philipp Vollmuth Gianluca Brugnara Chandrakanth J Preetha Felix Sahm Klaus Maier-Hein Maximilian Zenk Martin Bendszus Wolfgang Wick Evan Calabrese Jeffrey Rudie Javier Villanueva-Meyer Soonmee Cha Madhura Ingalhalikar Manali Jadhav Umang Pandey Jitender Saini John Garrett Matthew Larson Robert Jeraj Stuart Currie Russell Frood Kavi Fatania Raymond Y Huang Ken Chang Carmen Balaña Jaume Capellades Josep Puig Johannes Trenkler Josef Pichler Georg Necker Andreas Haunschmidt Stephan Meckel Gaurav Shukla Spencer Liem Gregory S Alexander Joseph Lombardo Joshua D Palmer Adam E Flanders Adam P Dicker Haris I Sair Craig K Jones Archana Venkataraman Meirui Jiang Tiffany Y So Cheng Chen Pheng Ann Heng Qi Dou Michal Kozubek Filip Lux Jan Michálek Petr Matula Miloš Keřkovský Tereza Kopřivová Marek Dostál Václav Vybíhal Michael A Vogelbaum J Ross Mitchell Joaquim Farinhas Joseph A Maldjian Chandan Ganesh Bangalore Yogananda Marco C Pinho Divya Reddy James Holcomb Benjamin C Wagner Benjamin M Ellingson Timothy F Cloughesy Catalina Raymond Talia Oughourlian Akifumi Hagiwara Chencai Wang Minh-Son To Sargam Bhardwaj Chee Chong Marc Agzarian Alexandre Xavier Falcão Samuel B Martins Bernardo C A Teixeira Flávia Sprenger David Menotti Diego R Lucio Pamela LaMontagne Daniel Marcus Benedikt Wiestler Florian Kofler Ivan Ezhov Marie Metz Rajan Jain Matthew Lee Yvonne W Lui Richard McKinley Johannes Slotboom Piotr Radojewski Raphael Meier Roland Wiest Derrick Murcia Eric Fu Rourke Haas John Thompson David Ryan Ormond Chaitra Badve Andrew E Sloan Vachan Vadmal Kristin Waite Rivka R Colen Linmin Pei Murat Ak Ashok Srinivasan J Rajiv Bapuraj Arvind Rao Nicholas Wang Ota Yoshiaki Toshio Moritani Sevcan Turk Joonsang Lee Snehal Prabhudesai Fanny Morón Jacob Mandel Konstantinos Kamnitsas Ben Glocker Luke V M Dixon Matthew Williams Peter Zamp Center for Biomedical Image Computing and Analytics (CBICA) University of Pennsylvania Philadelphia PA USA. Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA. Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA. Department of Informatics Technical University of Munich Munich Bavaria Germany. Intel Corporation Santa Clara CA USA. Department of Neuroradiology Heidelberg University Hospital Heidelberg Germany. Clinical Cooperation Unit Neuropathology German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ) Heidelberg Germany. Department of Neuropathology Heidelberg University Hospital Heidelberg Germany. Division of Medical Image Computing German Cancer Research Center Heidelberg Germany. Pattern Analysis and Learning Group Department of Radiation Oncology Heidelberg University Hospital Heidelberg Germany. Neurology Clinic Heidelberg University Hospital Heidelberg Germany. Department of Radiology & Biomedical Imaging University of California San Francisco San Francisco CA USA. Symbiosis Center for Medical Image Analysis Symbiosis International University Pune Maharashtra India. Department of Neuroimaging and Interventional Radiology National Institute of Mental Health and Neurosciences Bangalore Karnataka India. Department of Radiology School of Medicine and Public Health University of Wisconsin Madison WI USA. Department of Medical Physics School of Medicine and Public Health University of Wisconsin Madison WI USA. Leeds Teaching Hospitals Trust Department of Radiology Leeds UK. Department of Radiology Brigham and Women's Hospital Harvard Medical School Boston MA USA. Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown MA USA. Catalan Institute of Oncology Badalona Spain. Consorci MAR Parc de Salut de Barcelona Catalonia Spain. Department of Radiology (IDI
来源: 评论
Image-based characterization of the pulp flows
收藏 引用
pattern recognition and Image Analysis 2016年 第3期26卷 630-637页
作者: Sorokin, M. Strokina, N. Eerola, T. Lensu, L. Karttunen, K. Kalviainen, H. Machine Vision and Pattern Recognition Laboratory School of Engineering Science Lappeenranta University of Technology PO Box 20 LappeenrantaFI-53851 Finland Computer Vision Group Department of Signal Processing Tampere University of Technology PO Box 527 TampereFI-33101 Finland Cemis-Oulu Unit of Measurement Technology Kajaani University Consortium University of Oulu PO Box 127 KajaaniFI-87400 Finland School of Information Technology Monash University Malaysia Jalan Lagoon Selatan Bandar Sunway Selangor Darul Ehsan46150 Malaysia
Material flow characterization is important in the process industries and its further automation. In this study, close-to-laminar pulp suspension flows are analyzed based on double-exposure images captured in laborato... 详细信息
来源: 评论
Reconstruction of retinal spectra from RGB data using a RBF network
Reconstruction of retinal spectra from RGB data using a RBF ...
收藏 引用
Workshops on Image Processing Theory, Tools and Applications, IPTA
作者: Uyen Nguyen Lauri Laaksonen Hannu Uusitalo Lasse Lensu Machine Vision and Pattern Recognition Laboratory Lappeenranta University of Technology Lappeenranta Finland Department of Ophthalmology University of Tampere Finland Tauh Eye Center Tampere University Hospital Finland
In comparison with the standard three-channel colour images, spectral retinal images provide more detailed information about the structure of the retina. However, the availability of spectral retinal images for the re... 详细信息
来源: 评论
Deep learning for facial keypoints detection  10
Deep learning for facial keypoints detection
收藏 引用
10th International Conference on Computer vision Theory and Applications, VISAPP 2015
作者: Haavisto, Mikko Kaarna, Arto Lensu, Lasse Machine Vision and Pattern Recognition Laboratory Department of Mathematics and Physics Lappeenranta University of Technology Lappeenranta Finland
A new area of machine learning research called deep learning has moved machine learning closer to one of its original goals: artificial intelligence and feature learning. Originally the key idea of training deep netwo... 详细信息
来源: 评论
Evaluation of feature sensitivity to training data inaccuracy in detection of retinal lesions
Evaluation of feature sensitivity to training data inaccurac...
收藏 引用
Workshops on Image Processing Theory, Tools and Applications, IPTA
作者: Lauri Laaksonen Antti Hannuksela Ela Claridge Pauli Fält Markku Hauta-Kasari Hannu Uusitalo Lasse Lensu Machine Vision and Pattern Recognition Laboratory Lappeenranta university of Technology Lappeenranta Finland School of Computer Science The University of Birmingham United Kingdom School of Computing University of Eastern Finland Finland Department of Ophthalmology University of Tampere Finland TAUH Eye Center Tampere University Hospital Finland
Computer aided diagnostic and segmentation tools have become increasingly important in reducing the workload of medical experts performing diagnosis, monitoring and documentation of various eye diseases such as age-re... 详细信息
来源: 评论
Amplifier Errors in Dry Bacteriorhodopsin Sensor Measurements
Amplifier Errors in Dry Bacteriorhodopsin Sensor Measurement...
收藏 引用
IEEE International Instrumentation and Measurement Technology Conference
作者: Joonas P. Talvitie Teemu Tukiainen Lasse Lensu Tommi J. Karkkainen Pertti Silventoinen Mikko Kuisma Department of Electrical Engineering Lappeenranta University of Technology Lappeenranta Finland Machine Vision and Pattern Recognition Laboratory Department of Mathematics and Physics Lappeenranta University of Technology Lappeenranta Finland
Bacteriorhodopsin is considered an important biomolecule for biochemical and technology-oriented studies. The modeling and functionality of bacteriorhodopsin sensors have been extensively studied, but the studies lack... 详细信息
来源: 评论
Learning Generative Models of Object Parts from a Few Positive Examples
Learning Generative Models of Object Parts from a Few Positi...
收藏 引用
International Conference on pattern recognition
作者: Ekaterina Riabchenko Joni-Kristian Kämäräinen Ke Chen Machine Vision and Pattern Recognition Laboratory Lappeenranta University of Technology Department of Signal Processing Tampere University of Technology
A number of computer vision problems such as object detection, pose estimation, and face recognition utilise local parts to represent objects, which include the distinguished information of objects. In this work, we i... 详细信息
来源: 评论
Density-Aware Part-Based Object Detection with Positive Examples
Density-Aware Part-Based Object Detection with Positive Exam...
收藏 引用
International Conference on pattern recognition
作者: Ekaterina Riabchenko Joni-Kristian Kämäräinen Ke Chen Machine Vision and Pattern Recognition Laboratory Lappeenranta University of Technology Deparment of Signal Processing Tampere University of Technology
Part-based models have become the mainstream approach for visual object classification and detection. The key tools adopted by the most methods are interest point detectors and descriptors, shared codes for object par... 详细信息
来源: 评论
Comparison of appearance-based and geometry-based bubble detectors
Lecture Notes in Computer Science (including subseries Lectu...
收藏 引用
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2014年 8671卷 610-617页
作者: Strokina, Nataliya Juránek, Roman Eerola, Tuomas Lensu, Lasse Zemčik, Pavel Kälviäinen, Heikki Tampere University of Technology Department of Signal Processing P.O. Box 527 Tampere33101 Finland Brno University of Technology Department of Computer Graphics and Multimedia Brno Czech Republic Lappeenranta University of Technology Machine Vision and Pattern Recognition Laboratory P.O. Box 20 Lappeenranta53851 Finland
Bubble detection is a complicated tasks since varying lighting conditions changes considerably the appearance of bubbles in liquid. The two common techniques to detect circular objects such as bubbles, the geometry-ba... 详细信息
来源: 评论