Reduplication is a highly productive process in Bengali word formation, with significant implications for various natural language processing (NLP) applications, such as parts-of-speech tagging and sentiment analysis....
详细信息
Protein structure prediction is one of the main research areas in the field of Bio-informatics. The importance of proteins in drug design attracts researchers for finding the accurate tertiary structure of the protein...
详细信息
This paper explores the concept of isomorphism in cellular automata (CAs), focusing on identifying and understanding isomorphic relationships between distinct CAs. A cellular automaton (CA) is said to be isomorphic to...
详细信息
Ensuring the security and protection of digital content transmitted over a network is a critical challenge, as data can take various forms, such as text, images, audio, and videos, all of which can be easily manipulat...
详细信息
The class of maximal-length cellular automata (CAs) has gained significant attention over the last few years due to the fact that it can generate cycles with the longest possible lengths. For every l of the form l = 2...
详细信息
In our day-To-day life, emotion plays an essential role in decision-making and human interaction. For many years, psychologists have been trying to develop many emotional models to explain the human emotional or affec...
详细信息
The right partner and high innovation speed are crucial for a successful research and development (R&D) alliance in the high-tech industry. Does homogeneity or heterogeneity between partners benefit innovation spe...
详细信息
This study introduces an innovative deep learning methodology leveraging the U-Net framework for medical image segmentation and lesion detection in brain tumors. U-net architecture contains encoder and decoder blocks ...
详细信息
The thyroid gland, a pivotal regulator of essential physiological functions, orchestrates the production and release of thyroid hormones, playing a vital role in metabolism, growth, development, and overall bodily fun...
详细信息
Detecting sophisticated cyberattacks,mainly Distributed Denial of Service(DDoS)attacks,with unexpected patterns remains challenging in modern *** detection systems often struggle to mitigate such attacks in convention...
详细信息
Detecting sophisticated cyberattacks,mainly Distributed Denial of Service(DDoS)attacks,with unexpected patterns remains challenging in modern *** detection systems often struggle to mitigate such attacks in conventional and software-defined networking(SDN)*** Machine Learning(ML)models can distinguish between benign and malicious traffic,their limited feature scope hinders the detection of new zero-day or low-rate DDoS attacks requiring frequent *** this paper,we propose a novel DDoS detection framework that combines Machine Learning(ML)and Ensemble Learning(EL)techniques to improve DDoS attack detection and mitigation in SDN *** model leverages the“DDoS SDN”dataset for training and evaluation and employs a dynamic feature selection mechanism that enhances detection accuracy by focusing on the most relevant *** adaptive approach addresses the limitations of conventional ML models and provides more accurate detection of various DDoS attack *** proposed ensemble model introduces an additional layer of detection,increasing reliability through the innovative application of ensemble *** proposed solution significantly enhances the model’s ability to identify and respond to dynamic threats in *** provides a strong foundation for proactive DDoS detection and mitigation,enhancing network defenses against evolving *** comprehensive runtime analysis of Simultaneous Multi-Threading(SMT)on identical configurations shows superior accuracy and efficiency,with significantly reduced computational time,making it ideal for real-time DDoS detection in dynamic,rapidly changing *** results demonstrate that our model achieves outstanding performance,outperforming traditional algorithms with 99%accuracy using Random Forest(RF)and K-Nearest Neighbors(KNN)and 98%accuracy using XGBoost.
暂无评论