Existing models for thermoelastic damping consider geometric size effects only, the focus of this study is on tuning of thermoelastic damping with mechanical strain, which reduces both relaxation rate and thermal cond...
Existing models for thermoelastic damping consider geometric size effects only, the focus of this study is on tuning of thermoelastic damping with mechanical strain, which reduces both relaxation rate and thermal conductivity at the nanoscale. We developed a model that accounts for the contribution of tensile force and thermal conductivity in a clamped-clamped configuration nano-resonator. Experimentally measured thermal conductivity is then coupled with the model suggests the existence of a critical length scale (inversion point) below which quality factor increases with increase in thickness and vice versa. The nanoscale strain-thermal conductivity coupling is found to be most effective at and around this inversion point.
Fabrication of graphene was demonstrated by electrochemical exfoliation of graphite in an ammonium hydroxide solution. The processing parameter of applied voltage was optimized to accomplish graphene productivity and ...
详细信息
The researchers have been making efforts to spin artificial silk fiber from regenerated silk fibroin{SF)solution,with the aim to improve its mechanical properties for quite a long ***'s well known that the mechani...
详细信息
The researchers have been making efforts to spin artificial silk fiber from regenerated silk fibroin{SF)solution,with the aim to improve its mechanical properties for quite a long ***'s well known that the mechanical properties of the polymer material highly depend on both of the various structures and the molecular ***,understanding the conformation information of SF molecule in solution and the
In the present study, randomly aligned jute fiber/poly(lactic acid) (PLA) and two-directionally aligned jute fabric/PLA green composites with jute (50% by weight) treated with electron beam at different dosages (0, 5,...
详细信息
Teak wood is widely used for the housing interior and decoration because of its beautiful grains appearance; however, it often suffers from surface damage especially in the tiling application. The remedy is to apply a...
详细信息
ISBN:
(纸本)9781479906741
Teak wood is widely used for the housing interior and decoration because of its beautiful grains appearance; however, it often suffers from surface damage especially in the tiling application. The remedy is to apply a protective layer such as polyurethane (PU). In this work, the sol-gel inorganic reinforced hard coating formulation based on silicon dioxide (SiO 2 ) nanoparticles (SNPs) and methyltrimethoxysilane (MTMS) was investigated as a protective layer for teak wood. The coating formulation was applied by brushing, followed by pre-cured at 65 °C for 1 hr and cured at 95 °C for 3 hrs, yielding a transparent nanocomposite film. The SiO 2 nanocomposite coating showed an improvement in abrasion resistance property, tested with Taber abrasion at 5 N for 1000 cycles, as evidenced by a lower weight loss than an uncoated counterpart. The nanocomposite film also showed a higher wear through resistance than the commercial PU coating. Water can be easily absorbed by uncoated wood while the nanocomposite coated wood showed an improvement in water resistance as evidence by water contact angle. The cross-sectional image showed that the nanocomposite film and the wood surface were forming a physical interlocking.
Porous, nanostructured silver samples were produced using a direct-write method where a nanoparticle aerosol consisting of particles with a mean size of approximately 5 nm were accelerated to speeds of approximately 1...
详细信息
We demonstrate fast universal electrical spin manipulation with inhomogeneous magnetic fields. With fast Rabi frequency up to 127 MHz, we leave the conventional regime of strong nuclear-spin influence and observe a sp...
详细信息
We demonstrate fast universal electrical spin manipulation with inhomogeneous magnetic fields. With fast Rabi frequency up to 127 MHz, we leave the conventional regime of strong nuclear-spin influence and observe a spin-flip fidelity >96%, a distinct chevron Rabi pattern in the spectral-time domain, and a spin resonance linewidth limited by the Rabi frequency, not by the dephasing rate. In addition, we establish fast z rotations up to 54 MHz by directly controlling the spin phase. Our findings will significantly facilitate tomography and error correction with electron spins in quantum dots.
Using Monte Carlo simulations, we study in detail the overlap distribution for individual samples for several spin-glass models including the infinite-range Sherrington-Kirkpatrick model, short-range Edwards-Anderson ...
详细信息
Using Monte Carlo simulations, we study in detail the overlap distribution for individual samples for several spin-glass models including the infinite-range Sherrington-Kirkpatrick model, short-range Edwards-Anderson models in three and four space dimensions, and one-dimensional long-range models with diluted power-law interactions. We study three long-range models with different powers as follows: The first is approximately equivalent to a short-range model in three dimensions, the second to a short-range model in four dimensions, and the third to a short-range model in the mean-field regime. We study an observable proposed earlier by some of us which aims to distinguish the “replica symmetry breaking” picture of the spin-glass phase from the “droplet picture,” finding that larger system sizes would be needed to unambiguously determine which of these pictures describes the low-temperature state of spin glasses best, except for the Sherrington-Kirkpatrick model, which is unambiguously described by replica symmetry breaking. Finally, we also study the median integrated overlap probability distribution and a typical overlap distribution, finding that these observables are not particularly helpful in distinguishing the replica symmetry breaking and the droplet pictures.
暂无评论