Ratiometric luminescent microparticle sensors have been developed for sensing biochemical targets such as glucose in interstitial fluid, enabling use of dermal implants for on-demand monitoring. For these sensor syste...
详细信息
ISBN:
(纸本)9781424441198
Ratiometric luminescent microparticle sensors have been developed for sensing biochemical targets such as glucose in interstitial fluid, enabling use of dermal implants for on-demand monitoring. For these sensor systems to be deployed in vivo, a matched optoelectronic system for interrogation of dermally-implanted sensors was previously designed, constructed, and evaluated experimentally. During evaluation experiments, it revealed that the system efficiency was compromised by losses due to fiber connections of a commercial spectrometer. In this work, a high-throughput spectral system was presented to solve the photon loss problem. This system was designed, constructed, and tested. The throughput was around hundred time more than the previous system we used, and it was cost-effective, as well. It enables use of an integrated system for excitation, collection and measurement of luminescent emission, and will be used as a tool for in vivo studies with animal models or human subjects.
Condensed matter systems with topological defects in the ground states range from the Abrikosov phases in superconductors, to various blue phases and twist grain boundary phases in liquid crystals, and to phases of sk...
详细信息
Condensed matter systems with topological defects in the ground states range from the Abrikosov phases in superconductors, to various blue phases and twist grain boundary phases in liquid crystals, and to phases of skyrmion lattices in chiral ferromagnets and Bose-Einstein condensates. In nematic and chiral nematic liquid crystals, which are true fluids with long-range orientational ordering of constituent molecules, point and line defects spontaneously occur as a result of symmetry-breaking phase transitions or due to flow, but they are unstable, hard to control, and typically annihilate with time. Here we describe the optical generation of two-dimensional crystalline, quasicrystalline, and arbitrary ensembles of particlelike structures manifesting both skyrmionlike and Hopf fibration features—dubbed “torons”—composed of looped double twist cylinders and point defects embedded in a uniform director field. In these two-dimensional lattices, we then introduce various dislocations, defects in positional ordering of the torons. We show that the periodic defect lattices with and without dislocation are light- and voltage-tunable reconfigurable two-dimensional diffraction gratings and can be used to generate various controlled phase singularities in the diffracted laser beams. The results of computer simulations of optical images, diffraction patterns, and phase distributions with optical vortices are in a good agreement with the corresponding experimental findings.
Natural and synthetic hydroxyapatite (HA) scaffolds for potential load-bearing bone implants were fabricated by two methods. The natural scaffolds were formed by heating bovine cancellous bone at 1325°C, which re...
详细信息
Diabetes is one of the most common chronic diseases and can occur at any age. To avoid many side effects of diabetes on health, early detection of diabetes is very necessary. In this paper, we propose an alternative m...
详细信息
ISBN:
(纸本)9781467348904
Diabetes is one of the most common chronic diseases and can occur at any age. To avoid many side effects of diabetes on health, early detection of diabetes is very necessary. In this paper, we propose an alternative method to detect diabetes based on direct measurement of urine odor by using an electronic nose (E-nose). Artificial urines, used to simulated a situation of diabetes patient, were produced by adding glucose into the pure urine samples. Eight commercial chemical gas sensors were used as the sensing elements of our e-nose. Principal components analysis (PCA) and cluster analysis (CA) methods were employed for data analysis. The PCA and CA results show that the proposed technique was able to identify the glucose concentration in urine. In the future, e-nose can be a potential tool for diabetes diagnosis by healthcare personnel as well as home users.
Commercially available bulk silicon carbide (SiC) has a high number (>2000/cm2) of screw dislocations (SD) that have been linked to degradation of high-field power device electrical performance properties. Rese...
详细信息
Commercially available bulk silicon carbide (SiC) has a high number (>2000/cm2) of screw dislocations (SD) that have been linked to degradation of high-field power device electrical performance properties. Researchers at the NASA Glenn Research Center have proposed a method to mass-produce significantly higher quality bulk SiC. In order for this bulk growth method to become reality, growth of long single crystal SiC fibers must first be achieved. Therefore, a new growth method, Solvent-Laser Heated Floating Zone (Solvent-LHFZ), has been implemented. While some of the initial Solvent-LHFZ results have recently been reported, this paper focuses on further characterization of grown crystals and their growth fronts. To this end, secondary ion mass spectroscopy (SIMS) depth profiles, cross section analysis by focused ion beam (FIB) milling and mechanical polishing, and orientation and structural characterization by X-ray transmission Laue diffraction patterns and X-ray topography were used. Results paint a picture of a chaotic growth front, with Fe incorporation dependant on C concentration.
We report direct measurement of surface deformation in soft solids due to their surface tension. Gel replicas of poly(dimethysiloxane) masters with rippled surfaces are found to have amplitudes that decrease with decr...
详细信息
We report direct measurement of surface deformation in soft solids due to their surface tension. Gel replicas of poly(dimethysiloxane) masters with rippled surfaces are found to have amplitudes that decrease with decreasing gel modulus. Surface undulations of a thin elastomeric film are attenuated when it is oxidized by brief exposure to oxygen plasma. Surface deformation in both cases is modeled successfully as driven by surface tension and resisted by elasticity. Our results show that surface tension of soft solids drives significant deformation, and that the latter can be used to determine the former.
We report two-dimensional discrete dislocation dynamics simulations of combined dislocation glide and climb leading to “power-law” creep in a model aluminum crystal. The approach fully accounts for matter transport ...
详细信息
We report two-dimensional discrete dislocation dynamics simulations of combined dislocation glide and climb leading to “power-law” creep in a model aluminum crystal. The approach fully accounts for matter transport due to vacancy diffusion and its coupling with dislocation motion. The existence of quasiequilibrium or jammed states under the applied creep stresses enables observations of diffusion and climb over time scales relevant to power-law creep. The predictions for the creep rates and stress exponents fall within experimental ranges, indicating that the underlying physics is well captured.
In this paper the amount and morphology of cortical and trabecular bone porosities were estimated using optical microscopy and micro-computed tomography technique. The hierarchical structure of porosity at different s...
详细信息
In this paper the amount and morphology of cortical and trabecular bone porosities were estimated using optical microscopy and micro-computed tomography technique. The hierarchical structure of porosity at different structural scales spanning from a single lacuna (sub-microscale) to trabecular or cortical bone levels (mesoscale) was characterized and described. This study was conducted by using samples of untreated, deproteinized and demineralized bones, to obtain better insight into the bone structure and porosities. The motivation of this work is that the porosity in bone has a major effect on its mechanical response, yet it is often neglected in bone models. Investigations of the mechanical properties of bone and its main components (collagen and mineral phases), complemented by modeling, are of importance in orthopedics.
Summary form only given. Continuous scaling of Si CMOS devices and circuits, increased speed and integration densities resulted in problems with thermal management of nanoscale device and computer chips. Further progr...
详细信息
Summary form only given. Continuous scaling of Si CMOS devices and circuits, increased speed and integration densities resulted in problems with thermal management of nanoscale device and computer chips. Further progress in information, communication and energy storage technologies requires more efficient heat removal methods and stimulates the search for thermal interface material (TIMs) with enhanced thermal conductivity. The commonly used TIMs are filled with the particles such as silver or silica. The conventional TIMs require high volume fractions of the filler (~70%) to achieve thermal conductivity of ~1-5 W/mK. Recently, some of us discovered that graphene has extremely high intrinsic thermal conductivity, which exceeds that of carbon nanotubes. To use this property for thermal management of nanoscale electronic devices, we utilized the inexpensive liquid-phase exfoliated graphene and multi-layer graphene (MLG) as filler materials in TIMs. The thermal properties of the obtained graphene-epoxy composites were measured using the “laser flash” technique. It was found that the thermal conductivity enhancement factor exceeded a factor of 23 at 10% of the graphene volume loading fraction. This enhancement is larger than anything that has been achieved using other fillers. We have also tested graphene flakes in the electrically-conductive hybrid graphene-metal particle TIMs. The thermal conductivity of resulting composites was increased by a factor of ~5 in a temperature range from 300 K to 400 K at a small graphene loading fraction of 5-vol.-%. The unusually strong enhancement of thermal properties was attributed to the high thermal conductivity of graphene, strong graphene coupling to matrix materials and the large range of the length-scale - from nanometers to micrometers - of the graphene and silver particle fillers. Graphene-based TIMs have a number of other advantages related to their viscosity and adhesion, which meet the industry requirements. Our results su
暂无评论